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Abstract

Relational classification aims at including relations
among entities, for example taking relations between doc-
uments such as a common author or citations into account.
However, considering more than one relation can further
improve classification accuracy.

In this paper we introduce a new approach to make use
of several relations as well as both relations and attributes
for classification using ensemble methods. To accomplish
this, we present a generic relational ensemble model, that
can use different relational and local classifiers as com-
ponents. Furthermore, we discuss solutions for several
problems concerning relational data such as heterogene-
ity, sparsity, and multiple relations. Finally, we provide
empirical evidence, that our relational ensemble methods
outperform existing relational classification methods, even
rather complex models such as relational probability trees
(RPTs), relational dependency networks (RDNs) and rela-
tional Bayesian classifiers (RBCs).

1. Introduction

There are many possibilities for saving, handling and
publishing a large amount of data nowadays. This leads
to problems related with the retrieval of information in a
convenient way. In order to facilitate this retrieval, we need
to structure and organize this information. One way to do
this is to classify the information in particular categories.
Usually this is done by considering only local features like
text of entities. In text classification, it has been assumed
that entities are independent, however in most cases this as-
sumption does not hold because of the existing relationships
among the documents. Most documents, especially scien-
tific publications, are related through explicit links like ci-
tations or in an implicit manner, for example, if they are
written by the same author or published in the same journal.
These relations could be exploited using relational classifi-
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cation or relational learning to improve classification accu-
racy. Here the classes of related entities are used as pre-
dictor variables. Recently, especially relational methods,
which use collective classification (also called collective in-
ference) [11], i.e. iterative algorithms, which exploit the
relational autocorrelation of variables of connected entities,
received attention.

But in general, there is not just one relation to consider
in relational classification, but several. In literature, multi-
ple relations are combined either by using a set of neighbor
class predictor variables per relation in a single local clas-
sifier [20, 22] or by merging the relations and summing the
weights of common links [16]. Here, we will present a new
approach of combining different relations using ensemble
classification [5].

Often there are not just relations, but also attributes of
the objects under consideration, such as the textual content
(e.g., represented as a bag-of-words) for document objects.
If such local attributes are to be considered, in literature typ-
ically this is accomplished by adding them as predictor vari-
ables to the relational classifiers. We, in contrast, combine
local attributes with relations using again ensemble classifi-
cation methods.

Recently ensemble classification aroused interest in the
area of Machine Learning [5, 26, 2] due to its ability to re-
duce variance and bias and consequentially increasing accu-
racy. However, on our best knowledge it has not been used
for the aim of combining several relations.

In this paper we will make the following main contribu-
tions:

1. Formulate the relational classification problem and de-
scribe how several problems such as heterogeneity,
sparsity and multiple relations concerning relational
data can be handled.

2. Introduce our generic relational ensemble model that
consists of a local, a relational and an ensemble clas-
sification component.



3. Present some relational classification methods that use
collective classification and introduce two new simple
relational methods.

4. Evaluate the presented relational classification meth-
ods using ensemble classification on two scientific
publications datasets, one of them being very complex.
Compare the achieved results to well known com-
plex relational learning algorithms like RBC, RPT and
RDN as well as to a text classifier.

2. Related Work

One of the earliest approaches considering relations be-
tween entities was by Chakrabarti et al. [3], who proposed
a probabilistic model for classification of web pages using
the content of the classified page, the class labels of linked
pages as well as the content of these linked pages. They also
used a collective classification algorithm (relaxation label-
ing) and showed, that using the content of a web page and
the class labels of linked web pages increases predictive ac-
curacy. The algorithm “Hubs and Authorities” also con-
siders the links to other web pages and [13] calculates the
weights (hubs and authorities) iteratively.

More recently, researches have been done for instance on
relational probability trees [20], which is a complex learn-
ing algorithm taking into account relations among entities
and using probability trees [23]. Furthermore on relational
dependency networks [22], a type of probabilistic relational
model and on regression models using link distributions
[15], as well as on simple models like probabilistic rela-
tional neighbor (PRN) classifier [16] or other simple meth-
ods in [1]. Although most of them use several relations,
these relational methods did not apply ensemble classifica-
tion, neither for the combination of multiple relation, nor in
order to combine a local classifier with a relational classi-
fier. Moreover, they either are not considering local features
or if doing so, they incorporated them additionally as pre-
dictor variables to the relational classifier. Macskassy and
Provost [16] too, considered multiple relations, they rep-
resented the considered relations in a single graph (merging
the relations and summing the weights of the common links)
and performed their algorithms only once on this represen-
tation.

Fiirnkranz [7] used ensemble classification in the area
of hyperlink classification. Ensemble classification meth-
ods have been incorporated in order to combine the results
of the predictions for each hyperlink of a target page. He
showed, that this technique performed as well as a classi-
fier considering only the content of the target page or even
better. In contrast to his approach, we do not combine the
prediction for each instance of a relation (link) but only for
each relation type. HeB and Kushmerick [8] described a

different approach, they extended the iterative algorithm of
Neville and Jensen [21] and used voting to combine intrin-
sic and extrinsic features of web services. They showed,
that with voting, one can achieve better results than with a
text classifier or a relational classifier, that only appends the
intrinsic features to the extrinsic features. This is similar
to our approach of combining the results of a local and a
relational classifier; however, besides voting, we addition-
ally used a more powerful ensemble classification method,
namely stacking and combined multiple relations by using
ensemble classification, furthermore we have evaluated our
methods on a public data set.

3. Problem Formulation

Before we formulate the problem of relational classifica-
tion considering several relations, we define the problem of
traditional classification. In traditional classification objects
are described as vectors of values of some attributes (or vari-
ables) A. As we will need to distinguish between objects
with eventually identical attributes, we will describe objects
by an ID & € X and their attributes by amap a : X — A,
i.e., a(x) corresponds to the usual description of an object
by its attributes.

For a traditional classification task of objects into possi-
ble classes C, a set X;; C X of objects together with their
classes ¢ : X, — C is given for training and another set
Xt € X of objects together with their classes ¢ : X — C
is given for evaluation (with X, N X5 = ()). The task then
is to learn an attribute-based classifier model

¢:A—C ey

s.t. é(a(x)) equals c(z) for as many & € X as possible,
e.g., the misclassification rate

{z € X |é(a(z)) # c(z)}]

errx, (¢oa,c) = X
S

is minimal.
In relational classification there is, additionally to the
attribute-value data for objects, relational data about the ob-
jects. In the simplest case, there is a single binary relation
R C X x X between objects under consideration. Clas-
sifiers now can make use of additional information about
related objects, e.g., their attributes or their classes, if they
are known. As some of the related objects may themselves
belong to the testset, collective classification can be used
to derive consistent predictions. To make use of relational
information for classification, it must be propositionalized,
i.e., converted to suitable attributes. One of the simplest
propositionalization is to calculate class frequencies of re-

lated classes, i.e.,
{2 € Ry | c(2') = ¢}

freqc(‘r) = |R I )

reX,ceC
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Figure 1. Heterogenous and Homogenous
Representation

with R, := {2/ € X |(z,2') € R,c(x) # .} the set of
all objects related to x with known classes (a dot denotes a
missing value). We will see more complex propositional-
ization schemes in section 6.2.

In general, there can be more than one relation, relations
can hold between more than two objects, and relations can
involve further sets of objects, e.g., for classifying books,
also authors and journals could be important related objects
of a different type. In this case, a binary homogeneous rela-
tion must be derived to apply most relational classification
methods.

4. Relation Engineering

Here we discuss, how relational data can be represented,
how multiple relations can be combined and how to handle
sparsity.

First of all, we present possible views of relational data
and its representation. Relational data is usually heteroge-
nous but it can be viewed also in a homogeneous way.

Heterogeneity with respect to relational data means,
there exist more than one type of objects, namely a set of
target objects € X and one or more sets of other object
types O. Instances of these object types can be related, so
that one can have different types of relations Ry C X x Oy,
Ry C X x Oy etc. This heterogeneous view can be repre-
sented by a directed acyclic graph.

We have used the homogeneous view, similar to Mac-
skassy and Provost [16, 17] in order to allow the usage of
normal classification methods. In the homogeneous view
we have only one object type, such that, there exist a set of
target objects x € X and relations R C X x X between
these objects. Of course, on a semantic level, we have dif-
ferent relations.

In the homogeneous view, relational data is represented
by an undirected, weighted Graph G(X, E) with a set of
nodes X and a set of edges £ C X x X. The edges are
annotated with a weight w, whichis w : X x O — N,
while O can be equivalent to X. So that the objects O are
incorporated in the weight of the edges. A higher weight

indicates, that the relation between two nodes is more im-
portant. The weight of an edge is equivalent to the number
of objects o € O, which two target objects =, 2’ € X have
in common.

In the case of scientific papers, a paper can be connected
to another paper for instance, because they have been writ-
ten by the same author or since they cite each other. In
figure 1, one can see an example graph from the domain
of scientific publications that shows the transformation pro-
cess from a heterogeneous to homogeneous representation.
On the left side, a heterogeneous graph is shown, where
two node types exist, the author nodes (A) and the publi-
cation nodes (P), the links indicate the relation between an
author and a publication. On the right side the correspond-
ing homogeneous view of the graph is depicted, it contains
only the publication node type, the edges display the rela-
tion sameAuthor and the weights mark the number of au-
thors, that two papers have in common.

Another possibility to homogenize heterogeneous rela-
tional data is to use similarity measures. That means, the
weight of an edge between two objects X is equal to the
correlation of these objects. The correlation could be for in-
stance calculated by similarity measures like Pearson Cor-
relation or Cosine Similarity, which are often used in the
field of Recommender Systems. This approach is not used
in this paper, however we will further investigate this in fu-
ture research.

Another problem concerning relational data is, how to
combine several relations. There are different possibilities
to do this. One is to unify the relations, which need to be
combined, so that the new relation is S = |J; R; and the
weights of the edges of the new graph are the sum of the
weights of the edges in the original graphs. This approach
is used by Macskassy and Provost [16]. We in contrast,
consider each relation R; individually and build a graph
for each relation. Then perform relational classification
like described in the "Problem Formulation" section and
combine the results with ensemble classification methods,
which will be described in section 7. The main difference
of these approaches is, that in the first approach the relations
are combined on the data level and in our approach they are
combined on the result level.

The next problem that we address in this paper is the
sparsity of relations. It could happen, that some instances
have only very few or even no neighbors. The problem of
having no neighbors we do not address here, such instances
are simply assigned with the prior class or the class pro-
posed by a local classifier. We will only address the problem
of few neighbors. To cope with this sparsity we consider not
only the direct neighbors of an instance but also neighbors,
which are located some hops away from the target instance.
In order to avoid noise by using irrelevant neighbors we re-
strict this approach to the neighbors, which are located on
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Figure 2. Relational Ensemble Model

a path of length two and even more important, only if in-
stances are sparse with respect to the number of neighbors,
additional neighbors will be considered. We call this ap-
proach PRN2Hop, it is introduced in section 6.1 more pre-
cisely.

5. Relational Ensemble Model

In this section we describe our generic relational ensem-
ble model. 1t is composed of three main components, the
relational, the local and the ensemble classification com-
ponent (see fig. 2). The relational ensemble classification
process is listed in algorithm 1. It describes a classification
process, which uses all components of the model.

The individual components are:

Relational Classification Component For the relational
classification component, we use the graph representation
depicted in the right part of figure 1. For each relation
(e.g. sameAuthor, sameJournal or citation) we build a new
graph and apply relational classification methods (to be in-
troduced in section 6) using collective classification. The
input of the relational classification component is a set of
instances containing relational features. The output of a re-
lational classification algorithm is a probability distribution
over the target variable.

Local Classification Component The local classification
component uses only local features. In the domain of sci-

entific publications, the local classifier performs traditional
text classification. The data is represented in the manner
of bag-of-words, i.e. each document is represented by a
feature vector containing an entry for each word, the value
of an entry is the weight (e.g. TFIDF) of a word. Then
a machine learning algorithm is performed, the output is a
probability distribution over the target variable.

Ensemble Classification Component The task of the en-
semble classification component is to combine several clas-
sifiers in order to increase the classification accuracy. The
input of the component is a set of probability distributions
over the target variable, whereas they stem from the local
or relational components. Either a simple ensemble clas-
sification algorithm can be used, for instance voting, or a
meta classifier, which learns a meta model of the probabil-
ity distributions provided by the base classifiers. The out-
put of the ensemble classification component is a probabil-
ity distribution too. In our experiments we have used the
ensemble classification component twice, first for the com-
bination of the results of the relational classification com-
ponent and secondly as the last step in the model, in order
to combine local and relational classification, as it is listed
in algorithm 1.

6. Relational Classification Methods

Here we present both, simple and learning relational
classification methods, all of them using collective classi-
fication.

Collective classification (also called collective infer-
ence) methods are iterative procedures, which classify re-
lated instances simultaneously. Collective classification ex-
ploits relational autocorrelation. While relational autocor-
relation is an important property of relational data in which

Algorithm 1 Relational Ensemble Process
1. Classify instances using only local features

2. for each relation r:1 to m

(a) Build a graph
(b) Perform relational classification

(c) Output a probability distribution

3. Apply ensemble classification to the resulting proba-
bility distributions of the relations

4. Apply ensemble classification to the output of the local
classifier in 1. and the ensemble of relations in 3.

5. Output final classification




the value of an attribute for an instance is highly correlated
with the same variable from a related instance [12]. Col-
lective classification causes the propagation of information
in a graph, so that instances with unknown labels, if they
are initialized with a certain value, can be integrated in the
classification process. Many studies [3, 21, 25] have shown,
that collective classification may improve the classification
accuracy significantly.

We use two types of collective classification procedures.
For most relational classification methods, we apply relax-
ation labeling, like Macskassy and Provost [16, 17], origi-
nally introduced by Chakrabarti et al. [3]. In this algorithm
each instance is initialized with a probability distribution
(e.g. prior distribution or probability distribution returned
by a local classifier). Then we iteratively classify each in-
stance of the test set using a relational classification method
M in the inner loop of the iterative algorithm. Within this
iterative algorithm we use the classmembership probabili-
ties of the neighborhood estimated in the previous iteration,
whereas the output of the classification algorithm (a prob-
ability distribution) is used as input for the next iteration
t—1:

P(clz)' = M(R{™) 2

The procedure stops when a certain number of iterations
is reached or the algorithm converges. Here the uncertainty
is kept and propagated in the graph.

The second iterative algorithm is a special case of re-
laxation labeling and is called link-based classification
method, introduced by Lu and Getoor [15]. In their ap-
proach, the instances are initialized with a class label (e.g.
prior class or the class assigned by a local classifier), so that
the uncertainty is not considered in this algorithm. Like in
relaxation labeling each instance is classified in each itera-
tion and the output of the relational classification algorithm
(a certain category) is used as input for the next iteration un-
til convergence or a certain number of iterations is reached.

6.1. Simple Relational Methods

Now we present some simple relational methods. This
methods are simple nearest neighbor procedures, which do
not learn. The first method we have used, is the probabilis-
tic relational classifier (PRN) introduced by Macskassy and
Provost [16]. The classmembership probability of an in-
stance x € X and aclass ¢ € C'is computed as the weighted
arithmetic mean of the classmembership probabilities of the
neighbors x’, whereas R, is the set of neighbors of x:

P(c|lz) = % - Z w(z, ") - P(c|z”) (3)

' ER,

Whereas Z is a normalizing constant and w(z, ') is the
weight of the link between the instances x and z’.

Furthermore, we want to introduce two extensions of this
algorithm, which we have developed. In our first extension,
named PRNGeometricMean, we compute the classmember-
ship probability of z to the class ¢ by building the weighted
geometric mean of the neighboring classmembership prob-
abilities:

1/ Y prer, w(@a')
> “)

P(clr) = < H P(c|z’y @)

z'€R,

The weighted geometric mean is often a better way to
represent probabilities, especially here, where we assume,
that the classmembership probabilities of the neighbors
given the instance = are independent of each other.

The second extension is our algorithm PRN2Hop, which
additionally considers indirect neighbors at a distance of
two hops, only if the following condition is fulfilled: The
size of the neighborhood R, of an instance z is less than
a certain number d. Consequently additional neighbors are
included in the classification process only for instances with
a small neighborhood, this avoids noise. These approach
addresses the sparsity problem of relations, which has been
described in section 4. The classmembership probability is
computed as follows:

1

Plz) = -- > (w(z,a') - P(cla)+

' ER,

+ Z w(z', 2")- P(c|z")) (5)

z""€R,/||Rs|<d

The optimal number of neighbors d for PRN2Hop has
been determined on a small part of the training set.

Every method we described above is used together with
relaxation labeling.

6.2. Relational Learning Methods

Furthermore we want to present some relational classi-
fication methods, which learn a model on the training in-
stances. There exist several approaches to cope with rela-
tional data in order to learn a model. The most popular ap-
proach is, to propositionalize relational data by aggregating
set-valued attributes. Propositionalization was often applied
to relational data in order to “flatten” the data [15, 19, 21].
Kramer et al. [14] showed, that propositionalization may
have no negative effect to classification accuracy.

In our research, we have analyzed several aggregation
functions, which map the set-valued attributes (classes or
probability distributions of the neighbors of a particular en-
tity) to an aggregated value in order to use normal classifi-
cation methods.



First, we have used weighted average as aggregation
function, which calculates the attribute value by building
the average of the weighted probabilities of the neighbors
of an instance (which is equivalent to PRN in equation (3)).
This is similar to the aggregation function COUNT [15],
but using probabilities instead of counts and additionally
normalizing the sum of weighted probabilities. After cal-
culating the attributes for the training instances, we learn a
model on these attributes with a learning method (similar to
[15D).

The second aggregation function we present here, is the
Indirect RVS Score, which was introduced by Bernstein et
al. [1], not used as aggregation function for a learning algo-
rithm, but as a similarity measure for a simple classifier. It

is defined as follows:
_>

I H |

The Indirect RVS Score is based on the relational vector
space model [1] and corresponds to the Cosine Similarity
measure. It computes the similarity among an instance vec-
tor @, which contains the weights of the links from each in-

(6)

sim(z,c) =

. L - .
stance to instance x, and the indirect class vector ic, which
is the sum over all instances that belong to the class c :

=57 )
TreEC

The difference to the other approaches presented in this
paper is, that the neighbors of an instance are not considered
directly, but through the indirect class vector.

Moreover we have used a Naive Bayes Classifier based
on the approach of Chakrabarti et al. [3] and Macskassy
and Provost [17], however, instead of using relaxation la-
beling, we use link-based classification as collective classi-
fication algorithm. We call this algorithm Weighted Naive
Bayes. In contrast to the classical Naive Bayes classifier,
this approach considers the weights of the links between an
instance and its neighbors. Here the attributes of an instance
are the classes of its neighbors, while the order of these at-
tributes is not important.

The classmembership probability for an instance x and
class c is computed according to Bayes rule as follows:

P(Rqle) - P(c)

e = = w) ®
While P(R;|c) can be computed as:
PRI = 1~ [ Ple@)ie=  ©
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Z, R, and w(x,2’) are defined as in Section 6.1. The
advantage of Naive Bayes is its simplicity, which is the in-
dependence assumption. Although this can not hold for re-
lational data, Domingos and Pazzani [6] showed, that Naive

Bayes classifiers performed well. However, most Machine
Learning algorithms cannot be applied to relational data,
because each instance can have a different number of neigh-
bors and many algorithms cannot cope with missing values.
Naive Bayes however, support missing values, so that we
can choose the number of attributes as the maximum exist-
ing number of neighbors. That means, we can consider the
classes of the neighbors individually instead of aggregating
them as in the former approaches.

Like for the simple relational methods, we use a col-
lective classification algorithm for each presented relational
learning method. First the train instances are initialized and
the attributes have to be computed, then a model is learned.
Next, the test instances are initialized, the attributes are
computed and the learned model is applied in each itera-
tion to all test instances until the algorithm converges or a
certain number of iterations is reached. That means, in con-
trast to the EM (Expectation Maximization) algorithm, we
learn the model only once and perform the iterations only
on the test instances, on which the learned model is applied.

7. Ensemble Classification Methods

In this section, we present two ensemble classification
methods we have used in our generic framework. We have
decided to use voting, a simple ensemble classification tech-
nique and stacking, a more complex learning method. As
mentioned in the introduction, ensemble classification may
lead to significant improvement on classification accuracy.
This is because uncorrelated errors made by the individual
classifiers are removed by the combination of different clas-
sifiers [5]. Ensemble classification reduces variance and
bias, moreover, the combination of several classifiers may
learn a more expressive concept compared to a single clas-
sifier.

First, we sketch briefly simple unweighted voting: After
performing the individual classifiers, we receive probability
distributions for each classifier K; as output and build the
arithmetic mean of the class-membership probabilities for
each test instance and class:

P(c|r) = ZPI clz) (10)

If the classmembership probability of one of the initial
classifier is zero, we will use (10) on the remaining classi-
fiers. The disadvantage of voting is, that voting performs
well only if the results of the individual classifiers are simi-
lar.

The second ensemble classification method we present
here is stacking [26], also named stacked generalization
[28]. This method uses a meta-classifier to learn the prob-
ability distributions of the individual classifier and predicts



the probability distribution of the combination of these clas-
sifiers. Similarly to voting, we perform the individual clas-
sifiers K; using k-fold cross validation first, these classi-
fiers are called level-0 classifiers. Then, we need to set up
new instances, so called level-1 instances, which contain
the classmembership probabilities achieved by the individ-
ual classifiers and the original label c:

Tnew=(P(c1|2)1,....,P(cn|z)1,...P(c1|T) s ., Plen|z)n,c)  (11)

Then, a meta-classifier (we have used Logistic Regres-
sion) is learned on the new level-I training instances and
the model is applied to the level-1 test instances using k-
fold cross validation.

As mentioned in section 5, we will use these methods in
order to combine several relations, which as far as we know
has never been done before with ensemble classification,
and for one dataset we will additionally combine a local
classifier with a relational classifier.

8. Evaluation and Experimental Results

This section deals with the question, whether relational
ensembles are more accurate first, than complex relational
models, which do not use ensemble classification and sec-
ond, than models learned by a local classifier (text clas-
sifier). Moreover, we have compared our new approach
of combining several relations with the approach of Mac-
skassy and Provost [17]. We performed a systematic and
extensive evaluation on two real life datasets. In total we
have spent approximately 1500 CPU-hours for the experi-
ments on these datasets. Some of them have been performed
on a grid infrastructure.

Datasets To be comparable to other publications we
applied our approach to Cora [18], a public dataset of sci-
entific papers within the field of Computer Science. Similar
to Macskassy and Provost [16], we have used the 4240 pa-
pers from the area of machine learning with 4012 unique
authors. Additionally the dataset contains citations and
each publication can be assigned to one of seven categories.
In our experiments for Cora we have used two relations,
sameAuthor and citation. For this dataset we have not con-
sidered content information.

The second dataset is the CompuSciencel dataset, also
from the domain of scientific papers within Computer Sci-
ence. We have used 147571 papers with 117936 unique
authors, 9914 reviewers and 2833 journals. For each publi-
cation, a title and an abstract is available, but citations are
not. Thus, we will use the relations sameAuthor, sameRe-
viewer and sameJournal. A characteristic of this dataset is,

I'This corpora is extracted from a database produced by FIZ (Fachin-
formationszentrum) Karlsruhe for the information service io-port.net.

that each publication can be assigned to more than one cate-
gory out of the 77 categories that are available. That means,
we have to cope with the multilabel problem [24]. We used
the One-vs-All approach, that means we have to solve |C|
binary classification tasks.

In table 1 some properties of the graphs for the differ-
ent relations for Cora and CompuScience have been listed.
There we can assess, that CompuScience is a much more
complex dataset than Cora, especially the sameJournal re-
lation is very complex, it contains millions of edges. Fur-
thermore, we have observed, that the relational autocor-
relation is less for the relations of CompuScience than for
Cora. As mentioned in section 6, relational autocorrelation
is an important property, which influences the accuracy of
the methods we presented. Relational autocorrelation has
been computed using CramersV Statistic [4].

Evaluation Metrics In this subsection, we describe
shortly the evaluation metrics we have used. Similar to
most researchers, who worked on the dataset Cora, where
the multilabel problem does not exist, we have chosen ac-
curacy as evaluation metric. For the second dataset, where
we have to cope with the multilabel problem and solve bi-
nary classification tasks, we have decided to use Precision,
Recall and F-Measure as evaluation metrics. First, these
metrics are calculated per category and then aggregated by
using the micro-average approach.

Experiments We have performed several experiments:

1. In the first experiment setting we have performed for
both datasets three-fold cross validation using the al-
gorithms we have presented in section 6, while the re-
lations are combined by ensemble classification. The
main question is: How will our algorithm perform
compared to the complex methods RPT, RDN and
RBC? Here we use accuracy as an evaluation measure.
Despite of the existence of the multilabel problem for
CompuScience dataset, we have considered only the
main assigned class.

2. In the second experiment setup, we have performed
holdout sampling on Cora (10 - 90 % splits) using the
same algorithms as before. We wanted to know how
our methods, which apply ensemble classification, per-
form in comparison to the results achieved by the ap-
proach of Macskassy and Provost [16] and how the
amount of training data influences the accuracy.

3. For the CompuScience dataset we have performed an
additional experiment, using three-fold cross valida-
tion. The main question is, how the ensemble of re-
lational and local classifiers perform compared to the



Table 1. Properties of graphs for Cora and CompuScience

Cora CompuScience

sameAuthor ‘ citation | sameAuthor ‘ sameReviewer ‘ sameJournal
number of 28134 | 11258 | 1032069 750 113 | 54938 662
edges
avg. number
of neighbors 13 5 13 10 744
number of 636 657 23224 97 255 441
singletons
relational
autocorrela- 0.602 0.730 0.260 0.272 0.189
tion

results achieved by a local classifier. In this experiment
we consider all assigned classes.

Furthermore, we have done some experiments in order to
compare stacking and voting, both, in the case of fusing
relations and in the case of combining relational and lo-
cal classifiers. These experiments showed, that stacking is
almost always superior to voting. Stacking is used in the
first and third experiment setting, in the second experiment
setting this was not possible since stacking is performed
with k-fold cross validation. Moreover, we could not ap-
ply stacking in the first experiment setting for the Compu-
Science dataset, because of high memory requirements. Re-
garding relational learning methods using aggregation func-
tions, we performed several experiments with diverse clas-
sification models like Support Vector Machines, Decision
Trees and Linear and Logistic Regression. Due to the good
performance and the low computation time, we have de-
cided to use Logistic Regression.

Concerning the combination of relations, for the Cora
dataset, we have combined the relations sameAuthor and ci-
tation. The best combination for the CompuScience dataset
is to consider all relations, but in the first experiment we
have combined just the relations sameAuthor and sameRe-
viewer since the complex methods RBC, RPT and RDN
could not be applied to the sameJournal relation. Regard-
ing collective classification, the instances in Cora dataset
were initialized with the prior, because text has not been
considered for this dataset. For CompuScience we initial-
ized the test instances with the results achieved by a text
classifier. We split the datasets into test and training sets
by using stratified 3-fold cross validation or stratified hold-
out sampling as mentioned before. The connections, among
training and test set are preserved; this aids the inference
process.

In the first two experiment settings we will compare PRN
using the combination approach of Macskassy and Provost
[16] to PRN using our approach of combining relations, this
is called as from now EPRN, the other relational methods

described in section 6, which use our relation combination
approach are too prefixed with "E". The complex models
RBC, RPT? and RDN? do not use ensemble classification.
They represent each instance as a subgraph containing all its
neighbors including several relations. The complex meth-
ods RBC, RPT and RDN have been performed using an
open source tool called Proximity*. Because of the com-
plex CompuScience dataset, we could not run the methods
RPT and RDN on this dataset. All methods we have pre-
sented in section 6 and some others are included in our tool,
named RelEns’.
It uses Weka® , a machine learning workbench.

Experimental Results The results of the first exper-
iment for Cora are depicted in figure 3. We have com-
pared our algorithms to the complex methods RBC, RPT
and RDN. We have observed, that four of our algorithms
have achieved a significantly’ higher accuracy (asterisked
bars) than the mean accuracy. Furthermore we have no-
ticed, that our extension of EPRN, EPRN2Hop, performed
best.

Moreover, we have detected, that the simple methods,
described in section 6.1 achieved higher accuracy than the
relational learning methods. Only Logistic Regression us-
ing weighted average as aggregation function is also sig-
nificantly better than the other listed methods. All of our
methods performed better then the complex methods RBC,
RPT, RDN. Our algorithms seem to profit from the strength
of ensemble classification. Moreover they performed bet-

2The parameter values are set to tree depth=6,threshold=4, p=0.05.

3 Applied with 300 iterations.

4Portions of this analysis were conducted using Proximity, an
open-source software environment developed by Knowledge Dis-
covery Laboratory at the University of Massachusetts Amherst
(http://kdl.cs.umass.edu/proximity)

SPublished on
freiburg.de/cgnm/software/index _en.html

Shttp://www.cs.waikato.ac.nz/ml/weka/

7Significance level is 0.05. The null hypothesis is, that the result of an
algorithm is not higher than the other results. We used one sample t-test.

http://www.informatik.uni-
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Figure 3. Accuracy of the combination of
sameAuthor and citation (Cora)

ter than PRN with the approach of Macskassy and Provost
[16].

One interesting point is, to compare only the complex
methods in order to capture the reasons for the low accu-
racy of RPT and RDN. Doing this comparison, one asses,
that the simplest complex algorithm, RBC, achieves the best
result. The poor results achieved by RPT could be due to the
fact that it cannot exploit the power of relational autocorre-
lation because it does not use collective classification. An-
other reason could be, that we applied the algorithm with
only one attribute, which is the category of the neighbors
of an instance, but Neville and Jensen [22] showed, that
90% of the features constructed in their algorithm contain
the category as an attribute. RDN, which performed bet-
ter than RPT in [22], delivered poor results in our experi-
ments although it uses collective classification. Regarding
these results, one can argue, that the number of iterations
has been chosen too low. We investigated this matter fur-
ther by analyzing the influence of the numbers of iterations
on the results. The experiments have shown, that the accu-
racy does hardly change after 50 iterations.

The fist experiment setting has been performed on the
CompuScience dataset too. The results for CompuScience
are depicted in figure 4. As mentioned before, we could ap-
ply only one complex method, namely RBC, on this dataset
and we could combine just two relations, namely sameAu-
thor and sameReviewer. As for Cora, all methods listed in
figure 4 have reached a higher accuracy than RBC and again
the best result was achieved by EPRN2Hop. Furthermore,
the accuracy of EPRN is much higher than the accuracy of
PRN (relations combined by using the approach of Mac-
skassy and Provost [16]). Because of the complexity of this
dataset and consequently long computation time and high

0,65 -

:;iDMMHDD

PRN EPRN EPRN2Hop EPRN EWeighted RBC
Geometric Naive Bayes
Mean

Accuracy

Figure 4. Accuracy of the ensemble sameAu-
thor and sameReviewer(CompuScience)

memory requirements, some of our methods could not be
performed. So, the answer to the main question posed in
the first experiment setting is that for both datasets the rela-
tional methods described in section 6 have performed better
than the complex methods RBC, RPT and RDN.
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Figure 5. Accuracy holdout sampling (Cora)

The next experiment uses holdout sampling on Cora in
order to compare the relation fusion by ensemble classifi-
cation to the approach of Macskassy and Provost [16], who
merged the relations and summed the weights of the rele-
vant edges. Furthermore we want to analyze how the meth-
ods perform on different training and test set sizes. We
have split the data in training and test sets of different per-
centage (10 - 90 %) and have performed the algorithms for
each percentage on five randomly chosen splits. We applied
both combination approaches to the Cora dataset. Figure 5
shows the accuracy achieved by PRN and Logistic Regres-
sion using weighted average as aggregation function on sev-
eral splits. The solid line represents an algorithm, which
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uses our fusion approach with ensemble classification (here
voting), the dotted line shows the accuracy of the the algo-
rithm, which uses the combination approach of Macskassy
and Provost [16]. Both algorithms, EPRN and ELogistic
Regression using the weighted average aggregation func-
tion have achieved significantly higher accuracy than they
have done with the approach by Macskassy and Provost
[16]. Moreover we observe, that the relational learning
method achieves poor results when the amount of training
data is small. While the performance of the simple rela-
tional method is much higher on few training examples.

As mentioned in the previous section, the last experiment
setting has been applied on CompuScience dataset. Here,
we have measured the performance of the algorithm with
F-Measure. The aim of this experiment is to compare the
ensembles of relational classification and text classification
with pure text classification. We fused first, all relations us-
ing stacking and then combined the result with the outcome
of a text classifier using stacking as well. As a local clas-
sifier, we have chosen a Support Vector Machine using the
words of the abstract and title of a paper as features of the
SVM. Figure 6 shows the F-Measure of some algorithms,
which we have described in section 6. One can see, that
the ensembles of relational classification and text classifica-
tion always achieves higher F-Measure values than the text
classifier (using only local features). The results of EPRN
fused with the results of the text classifier are actually sig-
nificantly better than the results of the other algorithms. The
best relational learning algorithm in this experiment in con-
trast to the experiments on Cora is ELogistic Regression us-
ing Indirect RVS Score as aggregation function. This con-
firms the hypothesis of Bernstein et al. [1], that the Indirect
RVS Score is able to achieve better results when the rela-
tional autocorrelation is lower.

As consequence of these experiments, we recommend to
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exploit the relations existing in the data, in order to improve
accuracy.

9. Conclusions and Future Works

We have presented our generic relational ensemble
model, that includes a new way of combining several rela-
tions using ensemble classification and considers relational
features as well as local features using ensemble classifi-
cation. In the "Evaluation and Experimental Results" sec-
tion we have shown, that our approach improves classifica-
tion accuracy significantly compared to complex relational
learning algorithms [19, 20, 22] and to a local classifier.
Furthermore, we have shown, that our way of combining
relations is significantly better than the approach by Mac-
skassy and Provost [16] and in most of the experiments our
simple relational method EPRN2Hop performed best.

In future works we plan to do further experiments with
new aggregation functions to improve the performance of
relational learning algorithms and evaluate other ensemble
classification methods. Furthermore we will compare our
approach to a classifier considering local and relational fea-
tures as well.
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