
Noname manuscript No.
(will be inserted by the editor)

Scalable Gaussian Process based Transfer Surrogates
for Hyperparameter Optimization

Martin Wistuba · Nicolas Schilling ·
Lars Schmidt-Thieme

Received: 7 November 2016 / Accepted: 4 October 2017 / Published online: 22 December
2017
c© The author(s) 2017

Abstract Algorithm selection as well as hyperparameter optimization are
tedious task that have to be dealt with when applying machine learning to
real-world problems. Sequential model-based optimization (SMBO), based on
so-called "surrogate models", has been employed to allow for faster and more
direct hyperparameter optimization. A surrogate model is a machine learn-
ing regression model which is trained on the meta level instances in order to
predict the performance of an algorithm on a specific data set given the hyper-
parameter settings and data set descriptors. Gaussian processes, for example,
make good surrogate models as they provide probability distributions over
labels.

Recent work on SMBO also includes meta-data, i.e. observed hyperpa-
rameter performances on other data sets, into the process of hyperparameter
optimization. This can, for example, be accomplished by learning transfer sur-
rogate models on all available instances of meta knowledge; however, the in-

Nicolas Schilling and Martin Wistuba contributed equally to this work.

Martin Wistuba
Information Systems and Machine Learning Lab
Universitätsplatz 1
Tel.: +495121-88340380
E-mail: wistuba@ismll.uni-hildesheim.de

Nicolas Schilling
Information Systems and Machine Learning Lab
Universitätsplatz 1
Tel.: +495121-88340376
E-mail: schilling@ismll.uni-hildesheim.de

Lars Schmidt-Thieme
Information Systems and Machine Learning Lab
Universitätsplatz 1
Tel.: +495121-88340360
E-mail: schmidt-thieme@ismll.uni-hildesheim.de

2 Martin Wistuba et al.

creasing amount of meta-information can make Gaussian processes infeasible,
as they require the inversion of a large covariance matrix which grows with
the number of instances.

Consequently, instead of learning a joint surrogate model on all of the
meta-data, we propose to learn individual surrogate models on the observa-
tions of each data set and then combine all surrogates to a joint one us-
ing ensembling techniques. The final surrogate is a weighted sum of all data
set specific surrogates plus an additional surrogate that is solely learned on
the target observations. Within our framework, any surrogate model can be
used and explore Gaussian processes in this scenario. We present two different
strategies for finding the weights used in the ensemble: the first is based on a
probabilistic product of experts approach, and the second is based on kernel
regression. Additionally, we extend the framework to directly estimate the ac-
quisition function in the same setting, using a novel technique which we name
the "transfer acquisition function".

In an empirical evaluation including comparisons to the current state-of-
the-art on two publicly available meta-data sets, we are able to demonstrate
that our proposed approach does not only scale to large meta-data, but also
finds the stronger prediction models.

Keywords Hyperparameter Optimization · Gaussian Processes · Sequential
Model-Based Optimization · Metalearning

1 Introduction

Hyperparameter optimization and algorithm selection are ubiquitous tasks in
machine learning contexts that usually have to be conducted for every indi-
vidual research task and real-world application. Choosing the correct model
and hyperparameter configuration usually improves very poor predictions to
state-of-the-art performance.

Hyperparameter optimization tries to find the hyperparameter configura-
tion that minimizes a certain black box function y(x), which is commonly a
cross-validation loss of a model learned on some training data using the hy-
perparameter configuration x. Despite its omnipresence, hyperparameter op-
timization is usually a difficult task, as the optimization cannot be carried out
by minimizing a loss function with nice mathematical properties such as dif-
ferentiability or convexity. Consider for example the number of hidden layers
and hidden neurons for a simple feed-forward neural network. When learning
the neural network, both of these hyperparameters have to be set, as the final
prediction performance depends heavily on the correct setting of the model
complexity.If the model is too complex (i.e. many layers and neurons), the
model will very likely overfit the training data or get stuck in a local mini-
mum. However, if the model complexity is not high enough, it might underfit
the training data, and miss information vital to the optimization procedure.
Thus, the correct setting of these hyperparameters is vital for any serious ap-
plication of machine learning; however, as mentioned above, the difficulty with

Scalable Transfer Surrogates for Hyperparameter Optimization 3

this task is that we have no loss function which we can optimize to learn the
specific best choices for these hyperparameters.

The majority of efforts to solve this problem are based on the sequential
model-based optimization (SMBO) framework, which has its roots in the area
of black-box optimization. SMBO is an iterative approach which trains a sur-
rogate model Ψ on the observed meta level instances of y. Then, it can be
used in order to predict the performance of an algorithm on a specific data
set given the hyperparameter settings and data set descriptors. We use this
method to find promising hyperparameter configurations, evaluate y for these
configurations, and finally retrain Ψ . The overall process is repeated T many
times, and in the end, we take the best hyperparameter configuration found
so far. In comparison to exhaustive search methods, SMBO tries to adaptively
steer the optimization into promising regions in the hyperparameter space.

More recently, SMBO has been used in conjunction with metalearning in
order to create a "metalearning system". According to Lemke et al. [38], a
metalearning system must fulfill two properties:

1. A metalearning system must include a learning subsystem which adapts
with experience.

2. Experience is gained by exploiting meta knowledge extracted
(a) in a previous learning episode on a single data set, and/or
(b) from different domains or problems.

Our contributions to SMBO lead to a system that fulfills all of these require-
ments. Our system adapts with experience by updating the surrogate model
which represents the meta knowledge. Furthermore, we exploit meta knowl-
edge extracted on the new data set and from previous problems.

Throughout this paper, the term meta-data refers to observations of the
performances of different sets of hyperparameter configurations evaluated on
a various, different data sets. The inclusion of such meta-data in SMBO-based
hyperparameter optimization can be accomplished in different ways, with the
most commonly used approach being to pretrain the surrogate model on these
observations. Such surrogate models, which are pretrained on meta-data, are
called "transfer surrogate models" because they are capable of using the meta-
data to infer from previously seen data sets to new ones.

Another approach learns a particular initialization, i.e. a set of hyperpa-
rameter configurations, which is most likely to work well on the data. This
approach has been shown to produce better results; this seems plausible due
to the nature of the problem.

Usually, researchers gain more experience in choosing well-performing hy-
perparameter configurations for their models by running these models on a
variety of data sets and hyperparameters. Consequently, if a new data set
arrives, the hyperparameter optimization guided by an expert will comprise
this knowledge into choosing which initial configurations to test. This intu-
ition makes it clear that incorporating hyperparameter performance on other
data sets into the surrogate model used within SMBO aids in speeding up

4 Martin Wistuba et al.

and steering the hyperparameter optimization towards regions where we can
suspect to find good hyperparameter configurations.

A number of publications show that using meta-data is beneficial, including
but not limited to [2, 16,52,61,66,69,71].

In this paper, we integrate two pieces of work, [53, 69], which both learn
individual Gaussian processes on subsets of the meta-data. Each Gaussian pro-
cess is learned on all the observed performances of a single data set, i.e. the
hyperparameter configuration and its corresponding performance on this spe-
cific data set. Finally, all processes are then combined into a single surrogate
model. In this way, we can achieve scalability to large amounts of meta-data
because the training effort of the surrogate model is no longer cubic in the
number of data sets used to create the meta-data. We compare both papers
and extend the ideas therein by learning a transfer acquisition function using
an ensemble of Gaussian processes. The resulting approach shows better em-
pirical performance than the state-of-the art for hyperparameter optimization.
We present this result via a set of thoroughly conducted experiments which
maintain the scalability properties of a simple product of experts model. We
then also show that the acquisition function is an elegant way of dealing with
different performance scales for different data sets and a decaying use of meta-
data.

Our contributions in this work are:

– The unification of our previous work [53,69] as the scalable Gaussian pro-
cess transfer surrogate framework.

– Identification of typical problems faced when using meta-data in surrogate
models and thus,

– Proposal of using metalearning in the acquisition function instead of the
surrogate model to overcome these issues by using the transfer acquisition
function framework.

– Extensive empirical evaluations for comparing all approaches including pre-
vious and new methods with additional discussion.

This work is structured as follows: in the next section we review the related
work that has been done on SMBO and its combination with meta-data. In
section 3 we formally define the problem of hyperparameter optimization. We
then present the detailed definition of SMBO and Gaussian processes (often
used as an important component of SMBO) in sections 4 and 5. In Section
6, we present SGPT, our scalable transfer surrogate framework which unifies
our previous work [53,69]. Section 7 then contains our extension this work by
using the meta-data within the acquisition function of SMBO via our proposed
"transfer acquisition function" (TAF) We evaluate our proposed method and
compare it to current state of the art methods in Section 8, and then conclude
the paper in section 9.

Scalable Transfer Surrogates for Hyperparameter Optimization 5

2 Related Work

The algorithm selection problem is an important problem in many domains
and was first introduced in the 1970s [51]. Application domains include hard
combinatorial problems such as SAT [70] and TSP [32], software design [5],
numerical optimization [31], optimization [45] and many more. In our work,
we limit ourselves to the domain of machine learning although there are gen-
eralizations that subsume hyperparameter optimization in the broad category
of algorithm configuration [13]. Thus, we investigate both the problem of find-
ing the right algorithm as well as finding suitable hyperparameters for this
algorithm.

Existing work can be grouped with respect to different properties. One
way to group previous work is by methodological approach, where we have on
the one hand approaches that search the hyperparameter space exhaustively
and on the other hand methods that use black-box optimization techniques
such as sequential model-based optimization [30]. Other methods under this
grouping make use of search algorithms from artificial intelligence such as
genetic algorithms.

One can also distinguish between approaches based on those which use
meta-data and those that do not. Metalearning permits us to transfer past ex-
periences with particular algorithms and hyperparameter configurations from
one data set to another. Plenty of work has been done in that area and can
be found in some recently published books and surveys: [4, 38,65].

In the next section we discuss further related work as classified by method-
ology.

2.1 Exhaustive Search Methods

The most widely used method to optimize hyperparameters in machine learn-
ing is the "grid search". For a grid search, we choose a finite subset of hy-
perparameter configurations and evaluate them all in a brute force manner,
ideally within a parallel computing environment. In some cases, grid search
is manually steered by choosing a coarse grid at first to find regions where
hyperparameter performance is generally good, with such regions being in-
vestigated more closely using a fine-grained grid. This mixture of grid search
and manual search techniques appears in many publications: for instance [24]
and [36]. The downsides of grid search are rather obvious: if the dimension
of the hyperparameter space is large and no prior knowledge about hyperpa-
rameter performance is given, grid search requires many evaluations to deliver
good results, often at the expense of many useless computations.

Bergstra and Bengio [3] introduce Random Search, which essentially re-
places the fixed set of points by sampling points from some probability distri-
bution. This has mainly two advantages, at first, one may enter prior beliefs
over the hyperparameter space by defining the probability distributions to
draw from. Secondly, random search works better in scenarios of low effective

6 Martin Wistuba et al.

dimensionality, which is the case if hyperparameter performance almost stays
constant in one dimension of the hyperparameter space and changes drastically
in another dimension.

2.2 Model Specific Methods

Many methods for hyperparameter optimization exist which have been de-
signed for a specific algorithm. These methods are usually based on genetic
algorithms [20,58], although some are deterministic [34]. Beyond this, there are
many other methods for specific scenarios, including but not limited to meth-
ods for general regression and time-series models [42], for regression when
the sample size is small [7], for Bayesian topical trend analysis [41] and for
log-linear models [17]. Moreover, Schneider et al. deal with hyperparameter
learning in probabilistic prototype-based models [54], Seeger employs hyper-
parameter learning for large scale hierarchical kernel methods [55], and Kapoor
et al. are concerned with optimizing hyperparameters for graph-based semi-
supervised classification models [33].

The major limitation of all of these methods is that they are specifically
tailored to one particular model and only work well in certain scenarios. This is
a drawback that more widely applicable SMBO-based methods can alleviate.

2.3 Sequential Model-Based Optimization

In order to overcome the issues of exhaustive search methods or model specific
methods, black box optimization has been used in the context of sequential
model-based optimization (SMBO) [30]. SMBO learns a surrogate model on
the observed hyperparameter performance, which is then queried to provide
predictions for unobserved hyperparameter configurations. The predicted per-
formance and the uncertainty of the surrogate model is then used within the
expected improvement acquisition function to choose which of the many unob-
served hyperparameter configurations to test next. The main strand of research
along these lines has been committed to finding surrogate models, for example
a Gaussian process [48] which provided the so-called Spearmint method [57].
Other surrogate models, such as the random forests proposed in SMAC [28],
have also been investigated. While this earlier work focuses on optimizing hy-
perparameters only, Auto-WEKA [63] has shown that algorithm-selection can
be considered in a similar fashion to hyperparameters, and so the existing work
is capable of choosing both algorithms and hyperparameters in combination.

Additionally, research on including meta-data, i.e. observations of hyper-
parameter performance on other data sets, has been gaining a lot of attention.
Bardenet et al. [2] use SVMRANK as a surrogate and thus consider the hyper-
parameter selection as a ranking task rather than a regression task. In this
way, they are able to overcome the issues of different data sets having different
performance levels. To estimate uncertainties, they train a Gaussian process

Scalable Transfer Surrogates for Hyperparameter Optimization 7

on the output of the SVMRANK, in order to compute expected improvement.
Moreover, Gaussian processes with a meta kernel have been proposed [61,71].
Finally, neural networks have been used as surrogate models in combination
with a factorization machine [50] in the input layer [52].

2.4 Learning Curve Predictions

The idea of using meta-data in SMBO is to find better performing prediction
models within a smaller fraction of time. Another idea applicable to models
that are learned in an iterative fashion is to predict the learning curve, i.e. the
performance of the resulting model, after a number of epochs. For example,
Domhan et al. [12] predict the performance of the hyperparameter configura-
tion based on the partially observed learning curve after a few iterations. If the
final performance is likely to be worse than the current best configuration, then
the process is stopped and the configuration discarded, and the optimization
continues with another, different configuration. Swersky et al. [62] propose a
similar approach which never discards a configuration, but instead learns the
models for various hyperparameter configurations at the same time and switch
from one learning process to another if it turns out to be more promising.

There are other hyperparameter approaches not related to SMBO follow-
ing the same idea. There are, for example, some population-based approaches,
such as Successive Halving [29] and Hyperband [39], which choose a set of
hyperparameter configurations at random and incrementally train the learn-
ing algorithms in parallel. From time to time, the weakest configurations are
discarded. The Racing Algorithm by Maron [40] follows a similar principle
but is focused on lazy learners where the expensive part is testing rather than
training.

2.5 Meta Initializations

There are several strategies to find a set of initial configurations for hyperpa-
rameter optimization methods. Reif et al. [49] propose to initialize a hyper-
parameter search based on genetic algorithms with the best hyperparameters
on other data sets, where the similarity of data sets is defined through meta
features. Feurer et al. [15] propose the same idea for SMBO which was later
extended [16, 66]. The drawback of these approaches is that they do not con-
sider whether the initial hyperparameter configurations are very close to each
other and therefore may waste computation time by choosing too similar hy-
perparameters initially. Thus, one of our previous works proposes to learn a
set of initial hyperparameter configurations by optimizing a meta loss that
maximizes the overall improvement on the meta-data [67].

8 Martin Wistuba et al.

2.6 Meta Features

Meta features are descriptive characteristics of a data set and thus an essen-
tial component of all traditional metalearning methods that are learning across
problems. In this work, we use pairwise comparisons of the performance of two
hyperparameter configurations on one data set compared to another. This is
a very special instance of landmarkers [47]. Landmark features are created by
applying very fast machine learning algorithms (e.g. decision stumps, linear
regression) to the data, with the performance is added as a meta feature. In
contrast, our approach uses only the performance of algorithms and hyper-
parameter configurations which we have evaluated during our optimization
process, and thus, no additional time was spent for estimating these land-
markers. This idea has been already employed by some others [37, 60, 68]. In
contrast to their work, we propose a way of using these meta features also in
cases with continuous hyperparameters, since for continous hyperparameters,
it is very unlikely that we have seen the same hyperparameter configurations
for all data sets. The approach of pairwise comparisons proposed by the litera-
ture works only if we either only want to find the best algorithm and ignore the
hyperparameters [60] or discretize the hyperparameters [37,68]. We overcome
this problem by predicting the performance of a hyperparameter configuration
if it is not part of our meta-data set.

2.7 Other Approaches

Furthermore, there also exist strategies to optimize hyperparameters that
are based on optimization techniques from artificial intelligence such as tabu
search [6], particle swarm optimization [23] and evolutionary algorithms [21].
Since none of these strategies use information from previous experiments,
meta-data can be added analogously to the SMBO counterpart using in ini-
tialization [22,49]. Another interesting recent proposition is the use of bandit
optimization techniques for automatic machine learning [26].

3 Problem Definition

In this section we will formally define the problem of hyperparameter opti-
mization and introduce the notation that will be used in the remainder of the
paper. We will follow the notation that was introduced by Bergstra and Ben-
gio [3], but extend it to account for a more general problem of hyperparameter
optimization by also including model choice and other tasks.

Let D denote the space of all data sets and let M denote the space of
all models. Thus, D consists of all possible data sets, where instances might
have a vector representation, but can also be images, time-series, or similar
representations.

Scalable Transfer Surrogates for Hyperparameter Optimization 9

We then let M define the space of all machine learning models. This in-
cludes all parametric models, besides also trees and other models with param-
eters and a specific structure such as neural networks. The configuration space
X encodes the choice of algorithms and hyperparameters. Then, let us define
a general algorithm A as a mapping

A : X ×D −→M (1)

that takes as input a choice of hyperparameter x ∈ X and a data set D ∈ D
to then deliver a model M ∈ M learned on the training partition Dtrain of
data setD. In this formulation, the model choice as well as the hyperparameter
setting are both combined in the choice of x. Additionally, preprocessing tasks,
the choice of optimization technique, and other such settings can be treated
as hyperparameters. While allowing such treatment may arguably not be the
best option, we follow the lead of Thornton et al. [63]. We assume that X has
a fixed dimensionality p for notational purposes, although with new models
and learning algorithms being researched everyday, the dimensionality of X
is constantly growing. Given a concrete setting of x, A searches through the
model space M to find a model that minimizes the empirical loss L on the
training partition of data D, Dtrain, considering a regularization R to avoid
overfitting:

A (x,D) = argmin
M∈M

L
(
M,Dtrain)+R (M) . (2)

Now we can define the task of hyperparameter optimization as finding the
configuration x?, that yields a model learned on the training partition which
minimizes the loss on the validation partition Dvalid of the data set:

x? = argmin
x∈X

L
(
A
(
x,Dtrain) , Dvalid) = argmin

x∈X
y (x,D) . (3)

Note that, to shorten the notation a little bit, we introduce the function y
instead of the more cumbersome expression in the middle. In the literature,
the contours of y are also called response surface [9], a term which we will also
use throughout the paper. Figure 1 shows a response surface of an RBF-SVM
on the well-known Iris data set.

As y is an unknown black-box function, it cannot be minimized using
standard optimization techniques. Usually, y is optimized by doing a grid
search, which exhaustively searches through X for an optimum. Grid search
is conducted by defining a finite subset G ⊂ X which is usually the Cartesian
product of a few points in each dimension of X , Xi,

G =

p∏
i=1

Gi Gi ⊂ Xi |Gi| <∞ (4)

and then evaluating y for all of these points. If learning the model takes a
lot of time, this exhaustive approach can be a very time-consuming process
that results in a lot of useless computations, as usually grid search is not
conducted in an adaptive way, where observations of y are taken into account

10 Martin Wistuba et al.

Fig. 1 Response surface of an RBF-SVM on the famous Iris data set. Hyperparameters are
the cost of slack (C), and the kernel width γ.

to design the grid. In the recent years, as hyperparameter optimization has
become more and more an issue in machine learning, researchers have used
black-box optimization techniques described next.

4 Sequential Model-Based Optimization

Sequential model-based optimization (SMBO) is a technique that iteratively
fits a so called surrogate model, henceforth denoted by Ψ , on the observed
values of y such that Ψ ≈ y. For brevity, we will denote the set

H = {(x1, y(x1, D)), ..., (xt, y(xt, D))} (5)

of t many observed values as observation history for data set D. Having es-
timated a surrogate model, it is queried for not yet observed hyperparameter
configurations. Its output will be evaluated by an acquisition function a, which
chooses the next hyperparameter optimization to test, which naturally depends
on the surrogate prediction as well as ymin, which is the best value found so
far. This process is repeated until either a certain number of trials has been
conducted or the cross-validation performance has achieved an adequate level.
An overview of the whole process can be seen in Algorithm 1.

Many different surrogate models have been proposed in the recent years, for
instance Gaussian processes [2, 57, 61, 71] in different variations. Additionally,

Scalable Transfer Surrogates for Hyperparameter Optimization 11

Algorithm 1 Sequential Model-based Optimization
Require: Hyperparameter space X , observation history H, number of trials T , acquisition

function a, surrogate model Ψ .
Ensure: Best hyperparameter configuration found.
1: ymin ←∞
2: for t = 1 to T do
3: Fit Ψ to H
4: x← argmaxx∈X a

(
Ψ (x) , ymin)

5: Evaluate y (x)
6: H ← H∪ {(x, y (x))}
7: if y (x) < ymin then
8: xmin, ymin ← x, y (x)

return xmin

random forests [28] and neural networks [52] have been employed. What all
these surrogate models have in common is that they are relatively easy and fast
to evaluate, at least in comparison to evaluating y, while still being able to learn
complex functions. Using linear models to estimate a response surface as in
Figure 1 apparently leads to poor results. Additionally, a growing observation
history enables the surrogate model to better approximate the true response
surface of y. One key ingredient of surrogate models in the SMBO framework is
that, besides predicting the validation performance more accurately, they also
have to give an estimation about their uncertainty, i.e. predict a probability
distribution instead of a single value. In our work, the surrogate model Ψ will
predict for each configuration x a posterior mean µ (Ψ (x)) and a standard
deviation σ (Ψ (x)).

If the surrogate is fitted to the current observation history, we can query it
for new hyperparameter configurations to then decide which hyperparameter
to choose next; however, this decision is based on an acquisition function a,
which helps in balancing both exploration and exploitation throughout the
hyperparameter optimization. Exploration, on the one hand, is the process
of exploring the hyperparameter space, i.e. going into regions where we have
next to no observations of y. Naturally, this is what we want to do at the
start of the SMBO procedure. Exploitation, on the other hand, is conducted
if we have tested enough configurations and believe the surrogate model in
its predictions. At this stage, we expect to only test new configurations in
the vicinity of the currently best one. It is clear, however, that the search
will result in a bad local minimum if no exploration and only exploitation is
done. It is easiest to understand how exploitation and exploration are achieved
through the acquisition function by having a look at the GP-LCB acquisition
function [59]:

aGP-LCB (x) = −µ (Ψ (x)) + βtσ (Ψ (x)) . (6)

We fix a trade-off βt between the predicted value and the uncertainty. For
higher βt, we prefer exploration over exploitation because we give x with higher
uncertainty a higher weight and vice versa. For a fixed βt, good candidates x
are those with very small predicted posterior mean values or those with a high
uncertainty. If the score is dominated by the posterior mean, we are dealing

12 Martin Wistuba et al.

with an exploitation scenario, if it is dominated by the uncertainty, we are
dealing with exploration.

While GP-LCB is the best acquisition function to explain how exploration
and exploitation can be achieved, we use the expected improvement in our
experiments, which achieves a similar effect, but works slightly differently. At
the end of this section, we show an example of how a balanced tradeoff between
exploration and exploitation is achieved by expected improvement.

As mentioned earlier, a very common choice of acquisition function is the
expected improvement (EI) which was firstly used in [30]. The improvement
of a new hyperparameter configuration x can be defined as

I (x) = max
{
ymin − Ŷ (x) , 0

}
(7)

where Ŷ (x) is a random variable that covers our current belief over the perfor-
mance of x, i.e. Ŷ (x) is actually the prediction of our surrogate model Ψ . Then,
the expected improvement is simply the expected value of the improvement
function given our observation history H:

E [I (x)] = E
[
max

{
ymin − Ŷ (x) , 0

} ∣∣∣ H] . (8)

If Ŷ (x) follows a Gaussian distribution with mean and variance representing
the mean and variance of the surrogate model,

Ŷ (x) ∼ N
(
µ(Ψ(x)), σ2(Ψ(x))

)
, (9)

the expected improvement can be computed analytically. In order to do so, let
us first define Z as the best performance ymin standardized by our currently
estimated distribution

Z =
ymin − µ (Ψ (x))

σ (Ψ (x))
. (10)

Then, E [I (x)] can be computed as follows

E [I (x)] =

{
σ (Ψ (x)) (Z · Φ (Z) + φ (Z)) if σ2 (Ψ (x)) > 0

0 otherwise ,
(11)

where φ (·) and Φ (·) denote the Gaussian density and the cumulative distri-
bution function of a standard Gaussian distribution, respectively.

An overview of how SMBO works can be seen in Figure 2, where a Gaussian
process (black solid line with uncertainty indicated by dashed gray lines) is
initially learned on three data points to approximate the ground truth (yellow
solid line). The blue line at the bottom indicates the score of the acquisition
function, the cross indicates the maximum of the acquisition function, which
is the argument that will be evaluated next by SMBO. In the first three steps,
SMBO is doing exploration. The maximum of the acquisition function is with
arguments where we have a very high uncertainty about our prediction. In the
last step, uncertainty is low and the maximum of the acquisition function is
strongly determined by the posterior mea, and thus we are doing exploitation.

Scalable Transfer Surrogates for Hyperparameter Optimization 13

●

●

●

Hyperparameter

Lo
ss

●

●

●

●

Hyperparameter

Lo
ss

●

●

●

●

●

Hyperparameter

Lo
ss

●

●

●

●

●

●

Hyperparameter
Lo

ss

●

objective function
observations

posterior mean
posterior mean +/− stdev

acquisition function
next point

Fig. 2 Overview of SMBO using four trials. In this simple example, we assume that the
dimensionality of the hyperparameter configuration space X is one. The plots show the
mapping from the hyperparameter configuration (x-axis) to the corresponding loss (y-axis).
We start with three observations. Sequentially, different hyperparameters configurations are
evaluated, more knowledge about the function is gathered, and we slowly get closer to the
global minimum.

4.1 SMBO using Meta Information

Using meta information, i.e. information of hyperparameter performance on
another data set, during the process of hyperparameter optimization has at-
tracted a lot of interest within the last years. The motivation is very natural:
the more experiments we run on diverse data sets, the better feeling we get for
hyperparameters and how they affect the final validation performance. Thus,
an experienced researcher usually starts the search for good hyperparameters
in a subspace of X where improvements are likely. In order to use meta infor-
mation in SMBO, we now denote the observation history as

H = {(x1, y(x1, D1)), ..., (xK1
, y(xK1

, D1),, (xKM
, y(xKM

, DM)))} . (12)

Note that the hyperparameter configurations evaluated on diverse data sets
have to include identical settings.

The majority of work has focused on coming up with surrogate models that
can effectively integrate the meta knowledge, for example by being trained on
the observation history prior to starting SMBO on a new data set. In order to
do so, we have to add so called meta features, that describe the characteristics
of a data set, as otherwise the surrogate model would be unable to differentiate
between instances if the same hyperparameter configuration has been used.
Compared to the work in traditional metalearning, only a few (three or four)
meta features have been used for surrogate models [2, 52, 71]. We extended
the number of meta features in our previous work [53, 69] and will use the
same meta features in this work for all methods. We have listed all those meta
features in Table 1. To simplify the notation, we will from now on assume

14 Martin Wistuba et al.

that by writing D as a variable of y, the meta features of D are automatically
included.

Several surrogate models are explicitly designed for handling meta-data [2,
52,71]. Given the importance of these approaches for this work, we explain how
they work and how meta-data is used in detail in the upcoming subsections.

4.1.1 Surrogate Collaborative Tuning (SCoT)

Bardenet et al. [2] were the first to propose a surrogate model in conjunction
with meta-data, showing how to learn a single surrogate model over observa-
tions from many data sets. Since the same algorithm applied to different data
sets leads to loss values that can differ significantly in scale, they recommend
tackling this problem using a ranking model instead of a regression model.
Finally, they propose to use SVMRANK with an RBF kernel to learn a rank-
ing of hyperparameter configurations per data set. The ranking itself does not
provide uncertainty estimations which are needed for the acquisition function,
and thus, Bardenet et al. finally fit a Gaussian process to the ranking in order
to provide this.

4.1.2 Gaussian Process with Multi-Kernel Learning (MKL-GP)

Yogatama and Mann [71] propose to learn a Gaussian process using meta-
data. To overcome the problem of different scales on different data sets, they
propose to standardize the loss per data set by subtracting the mean and
scaling it to unit variance. Furthermore, they employ a linear combination
of a squared exponential kernel with automatic relevance determination (SE-
ARD) for observations on the same data set and a nearest neighbor kernel for
modeling similarities between data sets. They define the kernel as

kMKL ((xi, Dk) , (xj , Dl)) =αδ (Dk = Dl) kSE-ARD (xi, xj)

+ (1− α) δ (Dl ∈ N (Dk)) kNN (xi, xj) (13)

where the SE-ARD kernel is defined as

kSE-ARD (xi, xj) = exp

(
−1

2

p∑
k=1

(xi,k − xj,k)2

σ2
k

)
. (14)

The δ functions returns one if its predicate is true and zero otherwise. The
data set similarity kernel is set to

kNN (xi, xj) = 1− 1

B
‖xi − xj‖ , (15)

where B must be chosen such that kNN is always non-negative and N (D)
denotes the set of most similar data sets with respect to a distance function.
The distance between two data sets is defined as the Euclidean distance be-
tween their meta features, and is used to determine the neighboring data sets.

Scalable Transfer Surrogates for Hyperparameter Optimization 15

Table 1 The list of meta features used in our experiments for all methods.

Meta Features

Number of Classes Class Probability Max
Number of Instances Class Probability Mean
Log Number of Instances Class Probability Standard Deviation
Number of Features Kurtosis Min
Log Number of Features Kurtosis Max
Data Set Dimensionality Kurtosis Mean
Log Data Set Dimensionality Kurtosis Standard Deviation
Inverse Data Set Dimensionality Skewness Min
Log Inverse Data Set Dimensionality Skewness Max
Class Cross Entropy Skewness Mean
Class Probability Min Skewness Standard Deviation

xi ∈ X is the vectorial representation of the configuration. The tuple (xi, Dk)
indicates that xi has been evaluated on data set Dk. The similarity between
two tuples (xi, Dk) and (xj , Dl) is the weighted sum of the SE-ARD and the
NN kernel. The SE-ARD kernel is only considered if xi and xj are evaluated
on the same data set. The NN kernel is only considered if the settings are
evaluated on very similar data sets.

4.1.3 Factorized Multilayer Perceptron (FMLP)

Schilling et al. [52] proposed to use a modified multilayer perceptron as a
surrogate model. Meta instances are extended by meta features and data set
indicators. Data set indicators are nothing else but M + 1 additional binary
predictors, one for each data set. The indicator is one if the meta instance
belongs to the corresponding data set, and zero otherwise. The modified mul-
tilayer perceptron uses a special activation function in the first layer. Instead
of using a linear signal function, the authors propose

logistic

w0 +

p∑
i=1

wixi +

p∑
i=1

p∑
j=i+1

vTi vjxixj

 (16)

where logistic is the logistic function,

logistic (s) =
(
1 + e−s

)−1
, (17)

and V ∈ Rp×k are latent variables. This model is based on factorization ma-
chines [50], which are very commonly employed prediction models for recom-
mender systems. The underlying idea is to learn a latent representation for
each data set to model similarities between data sets.

5 Gaussian Processes

As mentioned earlier in this paper, our main focus is on learning Gaussian
product ensembles over different parts of the meta-data. However, we first

16 Martin Wistuba et al.

want to remind the reader of the definition and learning of Gaussian processes,
and to discuss their advantages and disadvantages.

Given a training data set consisting of inputs (for us the hyperparameters)
X = (x1, ..., xn) and their associated outputs y = (y(x1), ..., y(xn)), a Gaussian
process assumes that the labels follow a multivariate Gaussian

y ∼ N (µ(X), k(X,X)) (18)

where µ(X) is a mean function that will be set to zero without any loss of
generality [48], and k(X,X) is a positive semidefinite covariance matrix ex-
pressed through a kernel function k that computes the similarity of each pair
of instances. A very commonly used kernel function is the squared exponential
kernel which is defined as

k(x, x′) = exp

(
−‖x− x′‖2

2σ2
l

)
+ δ(x = x′)σ2

y , (19)

where σl is the kernel width and σy a small noise constant that is applied on
the diagonal to ensure numerical stability. Finally, δ is the indicator function
that returns one if its input is true and zero otherwise.

In order to make predictions with a Gaussian process, assume we have
training data (X, y) and a new test instance x? where the output is unknown.
Then, we are interested in the conditional distribution of y? given x? and the
training data. From the definition of Gaussian processes we know that the old
and new targets are jointly Gaussian(

y
y?

)
∼ N

(
0,

(
K k?
k>? k??

))
, (20)

where K := k(X,X), k? := k(X,x?) and k?? := k(x?, x?) for brevity. Then,
the conditional distribution of our test labels is a multivariate Gaussian

p(y? |x?, X, y, θ) = N
(
µ(x?), σ

2(x?)
)

(21)

with kernel hyperparameters θ and mean and variance [48]

E [y?] = µ(x?) = k?K
−1y (22)

Var [y?] = σ2(x?) = k?? − k>? K−1k? . (23)

Note that the computational expense lies in inverting the kernel matrix K
of the training data which has dimensionality n × n. However, once we have
estimated the inverse, we can easily predict means and variances for every
input that we are interested in.

Another nice aspect of Gaussian processes is that they are hyperparameter
free, as the kernel hyperparameters θ can effectively be learned by maximizing
their marginal likelihood [48] which is given by

log p(y |X, θ) = −1

2
y>K−1y − 1

2
log|K| . (24)

Scalable Transfer Surrogates for Hyperparameter Optimization 17

The above term can be maximized using standard optimization techniques
such as gradient ascent. As we will optimize θ on the meta-data prior to
starting the hyperparameter optimization for the new data set, we drop them
in order to make the notation more compact.

From the nature of SMBO, our observation history is incremented by one
additional instance with each SMBO trial that we undertake. For the kernel
matrix, this means only one additional column and row, consisting of the
kernel function evaluated for the new point and all the old points. However,
after adding the new observation, we have to invert K again.

To speed up the overall inversion process, we can use the Cholesky decom-
position on K, where K is decomposed as a product of triangular matrices:

K = LL>. (25)

Then, the predicted Gaussian for y? resolves to

p(y? |x?, X, y) = N (y? | k?α , k?? − l>l) (26)

with α = solve
(
L>, solve (L, y)

)
and l = solve (L, k?) for solve being the op-

eration of solving a system of equations. As soon as a new instance has to be
included into the Gaussian process, we can simply update the matrix L. This
is done by setting the new Lnew as

Lnew =

(
L 0
l> l∗

)
(27)

and setting

l∗ =
√
k?? − ‖l‖22 + σ2

y . (28)

This way we effectively reduce the computation from O(n3) to O(n2) where n
is the number of observations in the current observation history, due to L being
a lower triangular matrix. However, if we are aiming to include a vast amount
of meta-data, learning a Gaussian process will become an issue because the
run time is still quadratic. We address this issue in the next section.

6 Scalable Gaussian Process Transfer Surrogate Framework

In the previous section we discussed the learning of Gaussian processes, where
the most computationally expensive step lies in the inversion of the kernel
matrix K, which is of size n if we are facing n many training instances. Given
the scenario that we are in possession of large scale meta-data, learning a
Gaussian process becomes infeasible, as inverting K can only be done in O(n3)
computations; however, Gaussian processes are a natural choice as surrogate
models for SMBO, as they naturally predict uncertainties and are basically
hyperparameter free.

Beyond the computational challenges, learning a Gaussian process on all
training instances makes the strong assumption that each training instance

18 Martin Wistuba et al.

Fig. 3 The proposed framework for our scalable transfer surrogate based on Gaussian
processes. A Gaussian process is learned per data set and they are finally combined in a
weighted sum.

and data set are equally important. This issue is usually addressed by adding
meta features which leads to an indirect representation of similarity between
data sets and their influence. We want to propose a framework that tackles
both issues by making Gaussian processes scalable and making the influence
of each data set within the meta-data explicit.

Therefore, in order to still learn Gaussian processes, we propose to subdi-
vide the meta-data into M many individual parts and learn a single Gaussian
process independently on each of the parts, including a single, additional Gaus-
sian process for all the new observations that we will see during the SMBO
trials. Formally, we divide our meta-data

X = (X(1), ..., X(M)) y = (y(1), ..., y(M)) , (29)

in a way where all X(i) are pairwise disjoint. However, instead of taking an
arbitrary subdivision of our meta-data, we simply divide it by the data sets we
have already observed. This means, for each data set Di, we create a subset
X(i), y(i) which contains all meta instances of data set Di. As a result, we
have M Gaussian processes learned, one for each data set, such that for every
i = 1, ...M

pi

(
y? |x?, X(i), y(i)

)
= N

(
µi(x?), σ

2
i (x?)

)
. (30)

As mentioned earlier, we also learn a Gaussian process for the new observa-
tions, which will be updated after every SMBO trial. We will simply use the
index M + 1 for the target Gaussian process.

We derive our scalable Gaussian process transfer surrogate framework (SGPT)
by combining all M + 1 Gaussian processes into a weighted, normalized sum
as sketched in Figure 3. We define the following mean and precision

µ (x?) =

∑M+1
i=1 wiµi(x?)∑M+1

i=1 wi
(31)

σ−2(x?) =

M+1∑
i=1

viσ
−2
i (x?) . (32)

Scalable Transfer Surrogates for Hyperparameter Optimization 19

Algorithm 2 Scalable Gaussian Process Transfer Surrogate Framework
1: function train(X, y)
2: Split meta-data by data set:

X = (X(1), ..., X(M)) y = (y(1), ..., y(M)) . Equation 29
3: for i = 1 to M do
4: Estimate pi

(
y |X(i), θ(i)

)
= N

(
µi(x), σ

2
i (x)

)
. . Equation 21

5: function predict(x, pM+1

(
y |X(M+1), θ(M+1)

)
)

6: . Function called in Algorithm 1 (Ψ (x)) to estimate mean and standard deviation.

7: µ =
∑M+1

i=1 wiµi(x?)∑M+1
i=1 wi

. Equation 31

8: σ =

√(∑M+1
i=1 viσ

−2
i (x?)

)−1
. Equation 32

9: return (µ, σ)

The final framework is summarized in Algorithm 2. It consists of two different
parts. The first involves the training of the individual processes, and the sec-
ond one combines the processes for prediction. As mentioned before, training
involves dividing the meta instances in M subsets, one subset for each data
set on which we observed evaluations. Thus, every Gaussian process becomes
the expert of the respective data set. The prediction uses these experts plus
one additional expert that is estimated on the observed performances on the
new data set. Based on Equations 31 and 32, the mean and uncertainty is
estimated. In the following subsections, we will discuss how to derive possible
options for choosing w and v which we introduced in Equations 31 and 32.
Each version is a possible surrogate model Ψ that can be used in SMBO (see
Algorithm 1).

6.1 Product of Experts

In this section we want to formally derive values for the parameters w and v
for the scalable Gaussian process transfer surrogate framework (Algorithm 2).
Following our previous work [53], when applying the independence assumption,
we can write the joint likelihood in Equation 21 as a product of individual
likelihoods

p(y? |x?, X, y) =
M+1∏
i=1

pi

(
y? |x?, X(i), y(i)

)
, (33)

which is also called a product of experts model and has been introduced by
Hinton [25]. Additionally, weighting coefficients βi have been proposed to use
in the product of experts model to derive the generalized product of experts

p(y? |x?, X, y) =
M+1∏
i=1

pβi

i

(
y? |x?, X(i), y(i)

)
, (34)

where the initial formulation is obtained by setting all βi = 1 [25]. Usually,
the coefficients βi in the generalized product of experts are chosen to sum up
to one.

20 Martin Wistuba et al.

Computing the product of all these Gaussian densities, we obtain a Gaus-
sian distribution with the following mean and precision:

µ(x?) = σ2 (x?)

M+1∑
i=1

βiσ
−2
i (x?)µi(x?) (35)

σ−2 (x?) =

M+1∑
i=1

βiσ
−2
i (x?) . (36)

Substituting the precision into the formula for the mean, the predicted mean
resolves to

µ(x?) =

∑M+1
i=1 βiσ

−2
i (x?)µi(x?)∑M+1

i=1 βiσ
−2
i (x?)

, (37)

which is a sum of means, weighted by the product of βi and the individual
precisions. For our experiments, we set

βi =
1

M + 1
∀i = 1, . . . ,M + 1 , (38)

which does not influence the predicted mean as the terms cancel out; however,
this effectively increases the uncertainty which the general model of experts
usually tends to underestimate [10]. To sum up, generalized products of experts
are an instance of scalable transfer surrogates when setting

wi = βiσ
−2
i (x?) (39)

vi = βi (40)

as weight parameters in Algorithm 2.

6.2 Kernel Regression

In the previous section, we derived parameters w and v for Algorithm 2 under
the assumption every data set has equal importance for the task of finding
optimal hyperparameter configurations for our new data set DM+1; however,
in order to find good hyperparameter configurations on a new data set DM+1,
it is intuitive to give more weight to the influence of data sets that have a
similar hyperparameter response surface. Hence, setting wi to larger values for
these experts to increase their influence makes a lot of sense. Assuming that
we know the similarity k (χi, χj) between two data sets Di and Dj , where χi
and χj are the data set descriptors of Di and Dj , respectively, we proposed
to set the value of wi to the similarity between the data set Di and the new
data set DM+1 [69]:

wi = k (χi, χM+1) . (41)

The concrete kernel that we apply is the Epanechnikov quadratic kernel [44]

kρ (χi, χj) = γ

(
‖χi − χj‖2

ρ

)
, (42)

Scalable Transfer Surrogates for Hyperparameter Optimization 21

where the γ function is given by

γ (t) =

{
3
4

(
1− t2

)
if t ≤ 1

0 otherwise
(43)

and ρ > 0 is the bandwidth. Setting w like this, our scalable Gaussian process
transfer surrogate framework is now equivalent to kernel regression with the
Nadaraya Watson kernel-weighted average for the mean prediction. Further-
more, we propose to rely on the uncertainty of the surrogate model for the
new data set only:

vi =

{
1 i =M + 1

0 otherwise .
(44)

We would like to use the true similarity between the new data set and all
other data sets, but since this is not available, we will evaluate two different
common techniques to approximate it. One is based on meta features, i.e.
simple, statistical or information theoretic properties that are extracted from
the data set which describe the data set [2, 49, 56]. We use the meta features
listed in Table 1. For a more detailed explanation of meta features, we refer
to Michie et al. [43].

Using these meta features, however, has one drawback: the meta features
are constant, which means that the knowledge of the target data set enters
the model only via the target Gaussian process which is updated after every
trial. Therefore, we propose an alternative using a pairwise hyperparameter
performance comparison [37,68]. The idea is to select pairs (xi, xj) of evaluated
hyperparameter configurations on the new data setDM+1 and count how often
DM+1 and another data set Dk agree on the ranking of these configurations.
After evaluating t many hyperparameter configurations during SMBO on the
new data set, we estimate the data set descriptors for each data set Dk as

(χk)j+(i−1)t =

{
1

t(t−1) if µk (xi) > µk (xj)

0 otherwise
. (45)

While the value of y (·, DM+1) is known for these t hyperparameter configura-
tions, this is not necessarily true for the data sets D1, . . . , DM . Hence, we use
the prediction of each individual expert instead.

Computing the Euclidean distance of two meta feature vectors then yields
the number of discordant pairs normalized by dividing by the number of all
pairs. This is basically a distance function based on the Kendall rank correla-
tion coefficient [35]. In this way, during the SMBO process the coefficients are
adapted after each iteration, where the data sets that agree on more hyper-
parameter pairs with the target data set are weighted higher. This has been
shown to improve the performance drastically.

22 Martin Wistuba et al.

7 Transfer Acquisition Function Framework

The transfer surrogate models of the previous section provide very good re-
sults as we will see in the experiments section. Nevertheless, these models
face two important problems: first, each data set has different scales of eval-
uation scores which are reconstructed by each of the experts, and thus, the
weighted average will likely not meet the scale of the new data set. One way
to overcome this is to normalize the performance meta-data by data set and
also create an approximated normalization of the new data set. This is more
a work-around than a solution because the problem remains to some degree
and the approximated normalization for the new data set is inaccurate in the
very beginning.

The second problem stems from the fact that transfer surrogate models
assume that the meta-data is equally important throughout the whole opti-
mization process. It seems natural, however, that with more knowledge about
the new data set the influence of meta-data could diminish. In fact, we have
seen that it is important to reduce the influence over time as soon as all avail-
able knowledge is consumed [69]. Thus, we propose to transfer the meta-data
within the acquisition function instead of the surrogate model which means
that we will use a surrogate model that directly reconstructs the response sur-
face of the new data set, and does not consider any meta-data. We reconstruct
this response surface by using a Gaussian process that is trained on all avail-
able observations of the response surface for the new data set. We propose
a transfer acquisition function framework (TAF) that is very similar to the
aforementioned transfer surrogate framework presented in Algorithm 2. We
define a novel acquisition function that incorporates meta-data as

a (x) =
wM+1E [IM+1 (x)] +

∑M
i=1 wiIi (x)∑M+1

i=1 wi
(46)

with

Ii (x) = max
{
ymin
Di
− Ŷi (x) , 0

}
, (47)

where Ŷi (x) ∼ N
(
µi(x), σ

2
i (x)

)
and ymin

Di
is the best value achieved so far

on Di. Thus, the acquisition function becomes the weighted average of the
expected improvement (see Equation 8) on the new data plus the predicted
improvement on all other data sets from previous experiments. While the
framework looks very similar to the one proposed in Equation 31 and 32, the
implications are entirely different. As we previously tried to learn a mapping
between data characteristics and algorithm and hyperparameter behaviour
from the meta-data, we now try to learn a mapping between the data char-
acteristics and the improvement. Instead of predicting the performance for
each hyperparameter configuration and hence minimizing a regression loss
by employing meta-data, each hyperparameter configuration is scored by two
components:

Scalable Transfer Surrogates for Hyperparameter Optimization 23

first of all, the expected improvement on the new data set is taken into
account, which leads to a high uncertainty especially for the early trials; sec-
ondly, the predicted improvement that the hyperparameter configuration has
achieved on other data sets is considered, where both components complement
each other. In the early phase of the optimization, when the expected improve-
ment provided by the surrogate for the new data set is still very unreliable,
the improvement prediction from the meta-data favors hyperparameter con-
figurations that have good average performance. Over time, more information
about the new data set is collected and the expected improvement prediction
becomes reliable. At this point, most of the meta-data has been consumed,
i.e. many hyperparameter configurations in regions that have been good in
previous experiments have been tried and thus, the improvement is compara-
bly small. Thus, the meta-data starts to play a minor role in the acquisition
function.

The weights for the transfer acquisition function framework can be set
analogously to the propositions in Section 6.1 and 6.2.

8 Experiments & Results

8.1 meta-data Set Creation

We have created in total two meta-data sets, both for the purpose of learning
classification models.

The first meta-data set contains the predictive hyperparameter perfor-
mances for running an SVM on 50 different data sets all taken from the UCI
repository. We selected the data sets at random and decided to use an SVM as
a classifier since it is one of the most popular classification tools. We learn a
linear SVM, an SVM with RBF kernel, and lastly an SVM with a polynomial
kernel. The hyperparameters are then the choice of kernel, the cost of the slack
variables C and – depending on which kernel we choose – the kernel width γ
for RBF and the degree d for the polynomial kernel. We chose C from C ∈{
2−5, . . . , 26

}
, γ was searched in γ ∈

{
10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10,

20, 50, 102, 103
}
and the polynomial degree was optimized over d ∈ {2, . . . , 10}.

This are 288 different configurations per data set in total. If a data set was
already split, we merged all splits and created a new 80% training and 20% val-
idation split. For running the SVM we used the implementation by Joachims
[64]. The creation of this meta-data set took 160 CPU hours.

The other meta-data set is extended so that it contains both hyperparam-
eter performance on different data sets and performance of a set of different
algorithms. In order to accomplish this, we used WEKA [27] to run 19 different
classifiers on 59 data sets for a total of 21,871 hyperparameter configurations
to evaluate per data set. An overview of the employed classifiers can be seen in
Table 2. In total, this sums up to roughly 1.3 million experiments. The overall
computation of this meta-data set took about 900 CPU hours.

24 Martin Wistuba et al.

Table 2 Overview of all classifiers used within the WEKA meta-data set.

REP Tree Random Tree Random Forest
LMT J48 Decision Stump
ZERO_R PART ONE_R
RIPPER Decision Table KSTAR
IBK SMO Simple Logistic
MLP Logistic Regression Naive Bayes
Bayes Net

The meta target for both meta-data sets is the classification error. We
cannot assume that all approaches would work for other error metrics such as
the logarithmic loss. We did not conduct experiences for other loss metrics but
we do not expect different results since the problem remains the same: finding
the global minimum of the function y.

In a leave-one-data-set-out cross-validation, we choose one data set as the
target data set. No meta instance of this data set is available at the beginning of
the search and needs to be acquired by SMBO. To show that the optimization
strategies can deal with yet unobserved hyperparameter configurations, only
a subset of all meta instances is used for training purposes. The evaluation
on meta test is done using all meta instances of the target data set. Thus, all
methods also need to evaluate hyperparameter configurations they have never
seen in their meta-data.

8.2 Competing Optimization Strategies

We compare our proposed optimization strategies to a large set of state-of-
the-art optimization strategies which will be described in detail.

Random Search. This is a relatively simple baseline that chooses hyperpa-
rameter configurations at random. Nevertheless, Bergstra and Bengio [3] have
shown that this strategy can outperform grid search, especially for algorithms
with hyperparameters that have a low effective dimensionality.

Independent Gaussian Process (I-GP). The use of Gaussian processes as a
surrogate model goes back to the paper of Jones et al. [30] from 1998. It was
first proposed to be applied to the problem of hyperparameter optimization
for machine learning by Snoek et al. [57] under the name Spearmint. In our
experiment we used a squared-exponential kernel with automatic relevance
detection (SE-ARD) and also for all other optimization methods that are based
on a Gaussian process. This surrogate model does not use any knowledge from
previous experiments.

Independent Random Forest (I-RF). This surrogate is very similar to I-GP
but uses a random forest instead of a Gaussian process. It was proposed by
Hutter et al. [28] under the name SMAC and is applied in auto-sklearn [14]
and Auto-WEKA [63].

Scalable Transfer Surrogates for Hyperparameter Optimization 25

Initialization for I-GP and I-RF (I-GP (init) and I-RF (init)). Because I-GP
and I-RF do not consider any meta-data, we evaluate both surrogate models
also with a meta initialization [67].

Surrogate Collaborative Tuning (SCoT). SCoT [2] is the first transfer surro-
gate model proposed. Furthermore, it also tries to rank the hyperparameter
configurations instead of reconstructing the hyperparameter surface. It uses
SVMRANK to predict a ranking. Since the ranker does not provide any uncer-
tainties, a Gaussian process is fitted on the output of the ranker. The authors
originally proposed to use the RBF-kernel for SVMRANK but due to computa-
tional complexity we follow the lead of Yogatama and Mann [71] and use the
linear kernel instead.

Gaussian Process with Multi-Kernel Learning (MKL-GP).Yogatama and Mann
[71] proposed another transfer surrogate model. This transfer surrogate model
learns a Gaussian process with a specific kernel combination on all instances.
The kernel is a linear combination of the SE-ARD kernel and a kernel mod-
elling the similarity between data sets based on a set of meta features. To
tackle the problem of different scales of hyperparameter response surfaces for
different data sets, they propose to normalize the target.

Factorized Multilayer Perceptron (FMLP). FMLP [52] is another transfer sur-
rogate model that uses a specific neural network to learn the similarity between
data sets implicitly in a latent representation.

Scalable Gaussian Process Transfer Surrogate (SGPT). This is the framework
we propose in this work. We distinguish different instances of it depending
on how we choose the weights. SGPT-PoE is the version that chooses the
weights according to Section 6.1 and hence is based on product of experts.
Then we included also the kernel regression method introduced in Section 6.2
with the meta feature data set descriptors (SGPT-M) and with the pairwise
hyperparameter performance descriptors (SGPT-R).

Transfer Acquisition Function (TAF). In Section 7 we proposed an acquisition
function that makes use of meta-data. We combine it with the surrogate model
as used by I-GP and distinguish different versions depending on which weights
are chosen as for SGPT.

The kernel parameters used in the Gaussian process are learned by max-
imizing the marginal likelihood on the meta-training set (Equation 24). All
hyperparameters of the tuning strategies are optimized in a leave-one-data-
set-out cross-validation on the meta-training set.

The reported results were estimated using a leave-one-data-set-out cross-
validation and are the average of ten repetitions. For strategies with random
initialization (Random, I-GP, I-RF), we report the average of over thousand
repetitions due to higher variance. For those strategies that use meta features,
we use those meta-features that are described in Table 1.

26 Martin Wistuba et al.

8.3 Evaluation Metrics

We compare all optimization strategies with respect to three different evalua-
tion measures.

Average Rank

At each time step t all optimization strategies are ranked for each data set Di

according to their best score achieved, the better the score, the smaller the
rank. In case of ties, the average rank is used. Finally, the ranks are averaged
over all data sets yielding the average rank.

Average Distance to the Global Minimum

For an optimization strategy the average distance to the global minimum
(ADTM) at time step t is defined as follows. The distance of the best score
achieved for each data set D to the best score on this data set is computed.
The final score is the average over all data sets D ∈ D. To account for differ-
ent scales on different data sets, the hyperparameter performance is scaled to
[0, 1]. Formally,

ADTM =
1

|D|
∑
D∈D

min
x∈Xt

yD (x)− ymin
D

ymax
D − ymin

D

(48)

where ymin
D and ymax

D are the best and worst performance on the precomputed
grid, respectively. Xt is the set of all hyperparameter configurations tried until
time step t. For this evaluation metric it holds that lower values are better
and zero is the potential optimum.

Fraction of Unsolved Data Sets

This metric estimates the proportion of data sets in which the optimum ac-
cording to the precomputed grid has not been found. The evaluation metric
ranges between 1 if no optimum has been found to 0 if every optimum is found.

8.4 Scalability Experiment

As discussed in Section 5, Gaussian processes are computationally expensive.
Training time is cubic in the number of training instances and still quadratic
when updating it. Our proposed surrogate model SGPT makes use of Gaus-
sian processes in a scalable way. Given d data sets, where on each of these
n observations of hyperparameters performance have been made. A typical
way of using meta-data for SMBO [2, 71] is to train Gaussian process on all
instances which has an asymptotic training time of O

(
d3n3

)
. We propose to

learn for each data set an independent Gaussian process which reduces the
training time to O

(
dn3
)
which is no longer cubic in the number of data sets.

Scalable Transfer Surrogates for Hyperparameter Optimization 27

●

●

●

●
●

●
●

●
●

● ●
●

● ●
● ● ● ●

●

100

101

102

103

104

50 100 150
Number of Instances per Data Set

R
un

 T
im

e
in

 S
ec

on
ds

●Full GP SGPT/TAF FMLP

Fig. 4 SGPT (and hence also TAF) is clearly outperforming the state-of-the-art that is
training a single Gaussian process on the full meta-data with respect to scalability. FMLP,
which is based on a neural network, has a linear training time and provides faster results
for larger data sets.

Still, the complexity of both methods is cubic in the number of instances per
data set. In an empirical evaluation we show that our method is nevertheless
feasible while the state-of-the-art exceeds an acceptable run time.

We created an artificial meta-data set with d = 50 data sets and 5 hyper-
parameters. The number of instances per data set n varies from 10 to 190.
We estimated the run time for a Gaussian process on the full data and SGPT
for different n. The results are visualized in Figure 4. At a point where the
Full GP needs almost 7 hours of training, SGPT needs only about 2 minutes.
One can even consider to further improve the scalability by learning multiple
Gaussian processes per data set. To achieve this, the subsets X(i), y(i) defined
in Equation 29 have to be divided further. One could for example learn an
individual Gaussian process for each of the three SVM kernels and then apply
the method of Section 6.1.

As discussed earlier, the cubic run time make Gaussian processes unattrac-
tive for large meta-data sets. Hence, our main goal was to achieve run times
for Gaussian processes that are competitive to other models such as neural
networks as used by FMLP. Figure 4 shows that our approach needs time very
similar to FMLP, for fewer instances, it is even faster.

8.5 Predictive Performance in SMBO

We were able to provide theoretical and empirical evidence that our method
is scaling better than the current state-of-the-art methods. Now our aim is to
provide empirical evidence that our proposed methods are also competitive
for the task of hyperparameter optimization as well as combined algorithm
selection and hyperparameter optimization in terms of prediction.

First, we compare our proposed variations of SGPT and explain the results
in Section 8.5.1. Then, in Section 8.5.2, we compare SGPT to six state-of-
the-art methods. Finally, we analyze our proposed acquisition function and
empirically compare it to its SGPT counterpart in Section 8.5.3. In Section
8.5.5, we compare the best methods in a final comparison. We use Section 8.5.5

28 Martin Wistuba et al.

●

●

●

●

●
●

●1.6

1.8

2.0

2.2

0 20 40 60
Number of Trials

A
ve

ra
ge

 R
an

k

●

●

●

●

● ●

●

10−3

10−2.5

10−2

10−1.5

10−1

0 20 40 60
Number of Trials

A
ve

ra
ge

 D
is

ta
nc

e
to

 th
e

M
in

im
um

●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

0 20 40 60
Number of Trials

F
ra

ct
io

n
of

 U
ns

ol
ve

d
D

at
a

S
et

s

● SGPT−R SGPT−M SGPT−PoE

SVM Meta Data

Fig. 5 SGPT-R is outperforming the other two approaches due to the decaying influence
of the meta-data for the task of hyperparameter optimization.

●

●

●

●
● ● ● ●

1.50

1.75

2.00

2.25

2.50

0 100 200 300
Number of Trials

A
ve

ra
ge

 R
an

k

●

●
●

●
● ● ● ●

10−1.5

10−1

10−0.5

0 100 200 300
Number of Trials

A
ve

ra
ge

 D
is

ta
nc

e
to

 th
e

M
in

im
um

●

●

●

●

● ●

● ●

0.7

0.8

0.9

1.0

0 100 200 300
Number of Trials

F
ra

ct
io

n
of

 U
ns

ol
ve

d
D

at
a

S
et

s

● SGPT−R SGPT−M SGPT−PoE

WEKA Meta Data

Fig. 6 The adaptive weights also allows SGPT-R to outperform its variants for the task of
combined algorithm selection and hyperparameter optimization.

to conduct a significance analysis of our results and conclude the experimental
section with a comparison considering the training time in Section 8.5.6.

8.5.1 Evaluating the Scalable Gaussian Process Transfer Surrogate
Framework

In section 6, we derived or proposed three different ways of using meta-data in
SGPT, depending on how we set the weights. Before comparing to the state-of-
the-art methods, our aim is to focus on these three variations. We evaluated
all methods for the task of hyperparameter optimization as well as for the
task of combined algorithm selection and hyperparameter optimization. The
results are presented in Figure 5 and 6. SGPT-R is outperforming the other two
alternatives. Our explanation for this is the use of adaptive weights. Firstly,
they enable the method to quickly identify data sets that behave similarly and
additionally, the influence of meta-data decays over time. Hence, as soon as
enough knowledge is gathered from the meta-data, the system is able to rely

Scalable Transfer Surrogates for Hyperparameter Optimization 29

●
●

●

●

● ●
●

2

3

4

5

6

0 20 40 60
Number of Trials

A
ve

ra
ge

 R
an

k

●

●

●

● ● ●

●

10−3

10−2.5

10−2

10−1.5

10−1

10−0.5

0 20 40 60
Number of Trials

A
ve

ra
ge

 D
is

ta
nc

e
to

 th
e

M
in

im
um

●

●

●

●
●

●

●

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Number of Trials

F
ra

ct
io

n
of

 U
ns

ol
ve

d
D

at
a

S
et

s

●Random
I−GP

I−RF
SCoT

MKL−GP
FMLP

SGPT−R

SVM Meta Data

Fig. 7 Our proposed approach SGPT-R is outperforming all competitor methods with
respect to all three metrics. For all metrics, the lower the better.

●

●

●

●
●

● ●

2

3

4

5

0 100 200 300
Number of Trials

A
ve

ra
ge

 R
an

k

●

●
● ●

● ● ●

10−1.5

10−1

10−0.5

0 100 200 300
Number of Trials

A
ve

ra
ge

 D
is

ta
nc

e
to

 th
e

M
in

im
um

●

●

●

●

● ●

●

0.7

0.8

0.9

1.0

0 100 200 300
Number of Trials

F
ra

ct
io

n
of

 U
ns

ol
ve

d
D

at
a

S
et

s

●

I−GP
I−RF

I−GP (init)
I−RF (init)

FMLP
SGPT−R

WEKA Meta Data

Fig. 8 SGPT-R is outperforming the competitor methods for the task of combined algo-
rithm selection and hyperparameter optimization only in the first iterations. Then, FMLP
provides the best results. On this larger meta-data set we were not able to compare to those
methods that are based on a GP that is trained on the whole meta-data (i.e. SCoT and
MKL-GP).

stronger on the predictions of the surrogate for the new data set. This insight
was one of our key motivations for proposing TAF. In the following, we will
not use SGPT-M and SGPT-PoE in further comparisons to avoid overcrowded
figures.

8.5.2 Comparison to Other Competitor Methods

We saw in the last section that SGPT-R is the best variation of our SGPT
framework. We compare it on the task of hyperparameter optimization as well
as the task of combined algorithm selection and hyperparameter optimization.
As before, we use all three evaluation measures in the comparisons. The results
for the task of hyperparameter optimization are presented in Figure 7. SGPT-
R outperforms all competitor methods with respect to all three evaluation
metrics.

30 Martin Wistuba et al.

●

●
● ● ●

●

●3.0

3.5

4.0

4.5

0 20 40 60
Number of Trials

A
ve

ra
ge

 R
an

k

●

●

●

●

● ●

●

10−3

10−2.5

10−2

10−1.5

10−1

0 20 40 60
Number of Trials

A
ve

ra
ge

 D
is

ta
nc

e
to

 th
e

M
in

im
um

●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

0 20 40 60
Number of Trials

F
ra

ct
io

n
of

 U
ns

ol
ve

d
D

at
a

S
et

s

● SGPT−R
SGPT−M

SGPT−PoE
TAF−R

TAF−M
TAF−PoE

SVM Meta Data

Fig. 9 TAF and SGPT deliver similar competitive results on this meta-data set.

●

●

●

●
●

● ● ●

2

3

4

0 100 200 300
Number of Trials

A
ve

ra
ge

 R
an

k

●

● ●
●

● ● ● ●

10−2

10−1.5

10−1

10−0.5

0 100 200 300
Number of Trials

A
ve

ra
ge

 D
is

ta
nc

e
to

 th
e

M
in

im
um

●

●

●

●

● ●
● ●

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300
Number of Trials

F
ra

ct
io

n
of

 U
ns

ol
ve

d
D

at
a

S
et

s

● SGPT−R
SGPT−M

SGPT−PoE
TAF−R

TAF−M
TAF−PoE

WEKA Meta Data

Fig. 10 TAF provides a clear improvement over SGPT thanks to its adaptive use of meta-
data and better way of dealing with different data set scales.

The results for the task of combined algorithm selection and hyperparam-
eter optimization are presented in Figure 8. For this task, we do not compare
our methods to SCoT and MKL-GP because they are based on a Gaussian
process which is trained on the full meta-data set. Since the meta-data set is
too large, we were not able to conduct these experiments. Instead, we com-
pare our methods to a Gaussian process and a random forest that use a meta
initialization.

SGPT-R provides very good results for the first trials but then it is not
able to further progress and find better hyperparameter configurations. The
likely reason is that the WEKA meta-data set is a more challenging optimiza-
tion problem than the SVM meta-data set. Hence, more trials are needed in
comparison to the SVM meta-data, which consequently increases the number
of discordant pairs such that the distance of the new data set to the others is
increasing too quickly. Then, following the definition of Equations 42 and 45,
meta-data will not be considered any more and our method performs like a
Gaussian process without meta-data. Thus, the strongest competitor FMLP

Scalable Transfer Surrogates for Hyperparameter Optimization 31

●

● ●
● ●

●

●

2.25

2.50

2.75

3.00

0 20 40 60
Number of Trials

A
ve

ra
ge

 R
an

k

●

●

●

●

● ●

●

10−3

10−2.5

10−2

10−1.5

10−1

10−0.5

0 20 40 60
Number of Trials

A
ve

ra
ge

 D
is

ta
nc

e
to

 th
e

M
in

im
um ●

●

●

●

●
●

●

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Number of Trials

F
ra

ct
io

n
of

 U
ns

ol
ve

d
D

at
a

S
et

s

●MKL−GP FMLP SGPT−R TAF−R

SVM Meta Data

Fig. 11 SGPT-R and TAF-R provide similar performances by outperforming the other
competitors.

●

●

●

●
●

●
●

1.50

1.75

2.00

2.25

0 100 200 300
Number of Trials

A
ve

ra
ge

 R
an

k

●

●
● ● ● ● ●

10−2

10−1.5

10−1

10−0.5

0 100 200 300
Number of Trials

A
ve

ra
ge

 D
is

ta
nc

e
to

 th
e

M
in

im
um

●

●

●
●

● ●
●

0.5

0.6

0.7

0.8

0.9

1.0

0 100 200 300
Number of Trials

F
ra

ct
io

n
of

 U
ns

ol
ve

d
D

at
a

S
et

s

●FMLP SGPT−R TAF−R

WEKA Meta Data

Fig. 12 On this data set TAF-R is able show that it is more robust than SGPT-R.

is able to outperform it after some time. Also the other methods are getting
close to the performance for SGPT.

8.5.3 Evaluating the Transfer Acquisition Framework (TAF)

Our motivation for introducing TAF was to get rid of the problem of differently
scaled data sets and the question how to adaptively employ meta-data. It is
a direct extension of SGPT that uses meta-data in the acquisition function
instead of by the surrogate model. To provide empirical evidence that we
overcame the problems faced by many transfer surrogate models, we compare
TAF first to the different versions of SGPT. As a reminder, the postfix "-
PoE" is used for the variant that chooses the weights according to Section 6.1
and is based on product of experts. The postfixes "-M" and "-R" indicate the
variants based on kernel regression with the meta feature data set descriptors
pairwise hyperparameter performance descriptors, respectively (Section 6.2).
We have conducted our experiments on our two meta-data sets and obtained
the results summarized in Figure 9 and 10. TAF-R obtained best results. We

32 Martin Wistuba et al.

see a strong improvement of TAF-M and TAF-PoE over SGPT-M and SGPT-
PoE, respectively. As mentioned before, especially SGPT-M uses static weights
that do not account for the progress of the optimization process. Hence, the
impact of the meta-data remains constant which is unfavorable. The weights
of TAF-M are the same and thus also remain constant but the improvement on
the meta-data shrinks over time as better x have been found. Hence, we observe
an adaptive use of meta-data that leads to the large improvement over SGPT-
PoE and SGPT-M. Since SGPT-R has already a mechanism that decays the
influence of the meta-data, SGPT-R and the TAF approaches provide similar
good results on the SVM meta-data set in Figure 9 which likely results from
the better way of tackling the problem of different scales.

The improvement of TAF-R over SGPT-R becomes significant on the
WEKA meta-data set as presented in Figure 10. We saw in the previous ex-
periments that SGPT-R is able to have a good start on this problem but then
somehow gets stuck and has problems to further improve the solution. TAF-R
is able to overcome this issue. Having a similar good start, it is able to continue
its search and finds the optimum for more than 50% of the data sets within
300 trials.

8.5.4 Overall Comparison

We conclude our experiments by comparing the best methods from the TAF
and SGPT frameworks with the strongest state-of-the-art competitors. Figure
11 presents the results for finding optimal hyperparameter configurations for
a kernel SVM. Both, TAF-R and SGPT-R are outperforming the competitor
methods with respect to all three metrics and are approximately comparable.
For the WEKA data set the story is different. In Figure 12 it becomes clear that
SGPT-R has a good start, but then fails to further improve the solution. FMLP
is able to outperform it after some time and also other simpler competitor
methods are getting comparable performances. Thanks to the better way of
adaptive meta-data usage and handling of different data set scales, TAF-R
is once again the best method. While it is a little bit worse than SGPT-R
at the beginning, TAF-R quickly outperforms SGPT-R. Additionally, TAF-R
is always stronger than the runner-up method FMLP. Thus, we consider our
motivation confirmed in proposing TAF. Even though it looks very similar
to SGPT, TAF-R is more robust due to the aforementioned reasons. We are
able to prove theoretically and show empirically that our approach is faster
than the Gaussian process that has been learned on the full meta-data. In
our experiment we can show that the run time is approximately as fast as the
fastest transfer surrogate models. Hence, our proposed approach is not only
effective, it is also efficient.

8.5.5 Significance Analysis

Friedman Test. To analyze the significance of our results, we apply a Fried-
man test [18, 19] with the corresponding post-hoc tests. This was proposed

Scalable Transfer Surrogates for Hyperparameter Optimization 33

●●●●●●●●●

Random

I−GP

I−RF

SCoT

MKL−GP

FMLP

SGPT−R

TAF−R

Best

Critical Difference = 1.7

0 1 2 3 4 5 6 7 8 9 10

Average Rank

●● ●●●●●●●

Random

I−GP

I−RF

SCoTMKL−GP

FMLP

SGPT−R

TAF−R

Best

Critical Difference = 1.7

0 1 2 3 4 5 6 7 8 9 10

Average Rank

Fig. 13 Comparison of all optimizers against each other with the two-tailed Nemenyi test
on the SVM meta-data set. Groups that are not significantly different (at p = 0.05) are
connected. The left plot shows the results after the first trial, the right plot after the 30th
trial. After 30 trials there is no significant difference between our proposed methods TAF
and SGPT and the potentially best method.

● ●● ●●● ●●

I−GP

I−RF

I−GP (init)

I−RF (init)

FMLP

SGPT−R

TAF−R

Best

Critical Difference = 1.48

0 1 2 3 4 5 6 7 8 9

Average Rank

● ●●●● ●●●

I−GP

I−RF

I−GP (init)

I−RF (init)

FMLP

SGPT−R

TAF−R

Best

Critical Difference = 1.48

0 1 2 3 4 5 6 7 8 9

Average Rank

Fig. 14 Comparison of all optimizers against each other with the two-tailed Nemenyi test
on the WEKA meta-data set. Groups that are not significantly different (at p = 0.05) are
connected. The left plot shows the results after 30 trials, the right plot after 200 trials.

by Demšar [11] who analyzed multiple statistical tests and as a conclusion
proposed this method for comparisons of multiple methods over multiple data
sets. A very important aspect is that Demšar proposed this test for classifiers
and not for optimization methods, as there are vital differences between these
problems. Good methods might find a good solution, or even the best in a
shorter time period than other worse methods; however, if you provide these
methods with more time, they inevitably will catch up. It is clear that with
enough trials there will be no significant difference between a random strategy
and any other strategy. Since we are not aware of any better solution to analyze
the statistical significance of our results, we follow Demšar’s recommendation
for all methods nonetheless.

For our analysis we added one further method that we call Best. This is
an oracle method that chooses for any data set the best performing hyperpa-
rameter configuration and algorithm with the first trial.

We estimated the critical value for both meta-data sets and rejected the
null hypothesis that the measured average ranks are not significantly different
from the mean rank for α = 0.05. Since no method singled out, we use the

34 Martin Wistuba et al.

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > Random) P(TAF−R = Random) P(TAF−R < Random)

TAF−R vs. Random on Meta Data Set SVM

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > I−RF) P(TAF−R = I−RF) P(TAF−R < I−RF)

TAF−R vs. I−RF on Meta Data Set SVM

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > I−GP) P(TAF−R = I−GP) P(TAF−R < I−GP)

TAF−R vs. I−GP on Meta Data Set SVM

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > SCoT) P(TAF−R = SCoT) P(TAF−R < SCoT)

TAF−R vs. SCoT on Meta Data Set SVM

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > MKL−GP) P(TAF−R = MKL−GP) P(TAF−R < MKL−GP)

TAF−R vs. MKL−GP on Meta Data Set SVM

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > FMLP) P(TAF−R = FMLP) P(TAF−R < FMLP)

TAF−R vs. FMLP on Meta Data Set SVM

0.00

0.25

0.50

0.75

1.00

0 20 40 60
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > SGPT−R) P(TAF−R = SGPT−R) P(TAF−R < SGPT−R)

TAF−R vs. SGPT−R on Meta Data Set SVM

Fig. 15 Comparison of TAF-R against all other optimizers using the Bayesian hierarchical
test on the SVM meta-data set. Probabilities above 95% are significant. With increasing
number of trials the probability for equality of both methods increases due to a limited
number of considered configurations.

Nemenyi test [46] for pairwise comparisons. We computed the critical values
for p = 0.05. We conducted the significance tests for four different scenarios:
after the first and 30th trial on the SVM meta-data set and after the 30th
and 200th trial on the WEKA meta-data set. The results are visualized in
Figures 13 and 14. Groups of methods that are not significantly different are
connected.

On the SVM meta-data set the critical difference is 1.7 for p = 0.05. The
post-hoc tests detect significant differences between TAF-R and SGPT-R to
all methods but FMLP after the first trial and significant differences to I-GP,

Scalable Transfer Surrogates for Hyperparameter Optimization 35

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > I−RF) P(TAF−R = I−RF) P(TAF−R < I−RF)

TAF−R vs. I−RF on Meta Data Set WEKA

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > I−GP) P(TAF−R = I−GP) P(TAF−R < I−GP)

TAF−R vs. I−GP on Meta Data Set WEKA

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > I−RF (init)) P(TAF−R = I−RF (init)) P(TAF−R < I−RF (init))

TAF−R vs. I−RF (init) on Meta Data Set WEKA

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > I−GP (init)) P(TAF−R = I−GP (init)) P(TAF−R < I−GP (init))

TAF−R vs. I−GP (init) on Meta Data Set WEKA

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > FMLP) P(TAF−R = FMLP) P(TAF−R < FMLP)

TAF−R vs. FMLP on Meta Data Set WEKA

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Number of Trials

P
ro

ba
bi

lit
y

P(TAF−R > SGPT−R) P(TAF−R = SGPT−R) P(TAF−R < SGPT−R)

TAF−R vs. SGPT−R on Meta Data Set WEKA

Fig. 16 Comparison of TAF-R against all other optimizers using the Bayesian hierarchical
test on the WEKA meta-data set. Probabilities above 95% are significant. With increasing
number of trials the probability for equality of both methods increases due to a limited
number of considered configurations.

I-RF and Random after 30 trials. As discussed earlier, the optimal value is
fixed such that more trials mean that more methods achieve good solutions.
Nevertheless, even after 30 trials any method that is using meta-data still
outperforms any other method that is not. Finally, after 30 trials there is no
significant difference between our proposed methods and the potentially best
method Best.

On the WEKA meta-data set the critical difference is 1.48 for p = 0.05. The
post-hoc tests detect that I-RF is significantly worse than any other method.
After 30 trials, SGPT-R provides significantly better results than I-GP, I-RF
and I-RF with initialization. The experimental data is not sufficient to reach
any conclusion regarding FMLP, TAF-R and I-GP with initialization. After
200 trials, no statistically significant statement can be made about all methods
but I-RF and Best.

Bayesian Hierarchical Test. In addition to the Friedman test, we conduct a
second significance test, namely the recently proposed Bayesian hierarchical
test [8]. As proposed by Corani et al., we assume that two classifiers are prac-
tically equivalent if their mean difference of accuracy lies within the interval

36 Martin Wistuba et al.

●

●
●

●

●
●

3

4

5

0 50 100 150 200
Normalized Runtime

A
ve

ra
ge

 R
an

k

●
●

●

●

●

●

●

●

10−2

10−1.5

10−1

10−0.5

0 50 100 150 200
Normalized Runtime

A
ve

ra
ge

 D
is

ta
nc

e
to

 th
e

M
in

im
um

●

●●

●

●

●

●

●

0.6

0.7

0.8

0.9

1.0

0 50 100 150 200
Normalized Runtime

F
ra

ct
io

n
of

 U
ns

ol
ve

d
D

at
a

S
et

s

●

I−GP
I−RF

I−GP (init)
I−RF (init)

FMLP
SGPT−R

TAF−R

WEKA Meta Data

Fig. 17 Comparison of TAF-R to its competitor method considering the run time. TAF-R
still performs best. In contrast to the previous experiments, FMLP is worse and RF better.

(−0.01, 0.01). The test produces three probabilities, the first two being whether
one or the other classifier is significantly better than the other. Additionally
it provides a probability whether both classifiers are practically equivalent as
their difference of accuracies lies within the region of practical equivalence
(rope). Figures 15 and 16 present the posterior probabilities of the hierarchi-
cal model for each trial. For a significance level of α = 0.05, the results are
significant when the posterior probability is above 95%. However, the advan-
tage of the Bayesian hierarchical test is that posterior probabilities can be
meaningfully interpreted even when they do not exceed the 95% threshold [8],
simply by computing the odds ratios of the different outcomes. We see that
TAF-R provides, sometimes significant, better results than Random, I-GP, I-
RF, SCoT and MKL-GP on both meta-data sets. In comparison to FMLP
and SGPT-R the results are not significant. However, the test indicates that
these methods are either equal or TAF-R is better. There is little indication
that TAF-R performs worse, as the respective probability only increases when
compared to SGPT-R on the WEKA meta-data set in some of the early trials.

8.5.6 Performance with Respect to Run Time

In the previous experiments we assumed that the training time is always the
same no matter which configuration is chosen. The main reason for this is
that none of the methods considers the run time needed for evaluating a con-
figuration when choosing which configuration to test next. All of them try to
find the global minimum in as few trials as possible. However, in practice it
is of course very important to consider the run time as well. Since for the
Weka meta-data set not only the hyperparameters are changing but also the
model, we conducted a run time experiment for this particular meta-data set.
The results are reported in Figure 17. In our experiments we used various
data sets which differ in the number of predictors and instances. To ensure
that each data set has equal influence on the average results, we normalized
the run time. The run time for each data set is normalized by dividing it by

Scalable Transfer Surrogates for Hyperparameter Optimization 37

the average training time needed for a model to be trained on this data set.
Hence, the normalized run time in Figure 17 at 1 shows the performance of
all methods after investing the amount of time that is needed to train a single
model on average. We report ADTM and fraction of unsolved data sets for
each method starting at the time when at least one configuration for all data
sets has been evaluated. We report the average rank starting at the time when
every method has evaluated at least one configuration for all data sets.

Our proposed method TAF-R still yields the best results. The biggest dif-
ferences to the previous results are the changes of FMLP and I-RF. I-RF
improved a lot. It evaluates far more configurations per time unit than any
other method. This leads to worse results in the previous evaluation protocol
but pays off under this protocol. For FMLP it is exactly the other way round.
It mainly focuses on time-consuming configurations. While it needs only few
configurations to find good models, it needs more time than most competitor
methods.

9 Conclusions

In this work, we proposed a new transfer surrogate model framework which
is able to scale to large meta-data sets. Such considerations will become a ne-
cessity in the near future as with more experiments conducted every day, the
meta-data that can be employed also grows. To ensure scalability, our trans-
fer surrogate model is built on Gaussian processes which have been learned
individually on the observed performances on a single dataset only, to then be
combined into a joint surrogate model on the basis of product of experts as well
as kernel regression models. Additionally, as Gaussian processes are basically
hyperparameter free, we have created a strong but scalable surrogate model,
that also does not require a second stage hyperparameter optimization, as op-
posed to other surrogates in the related work. Overall, we derived different
instances of our framework and evaluated them with respect to optimization
performance and scalability on two meta-data sets containing both hyperpa-
rameter optimization as well as model choice. We show empirically that our
method is able to outperform existing methods with respect to both measures
by choosing well-performing hyperparameter configurations while maintaining
a small computational overhead.

Nevertheless, the transfer surrogate model still suffers from the problem
caused by different performance scales on different data sets, which introduces
a bias when selecting the next hyperparameter configuration to test. As a
result of this issue, we proposed to decay the influence of meta-data as the hy-
perparameter optimization progresses, we have found empirically that this is
strategy proves advantageous. Unfortunately, this decay is relying on heuris-
tics, which was our motivation to use the meta-data within the acquisition
function instead of the surrogate model to achieve a more principled effect.
Similarly to the transfer surrogate framework, we derived a transfer acqui-
sition framework that keeps the assets of our previously proposed surrogate

38 Martin Wistuba et al.

model but overcomes its disadvantages and directly uses the improvement of
the meta-data. In a conclusive evaluation, we were able to confirm our intu-
ition empirically on two meta-data sets, as the transfer acquisition framework
shows even higher performance than the transfer surrogate model on the same
meta-data sets. Consequently, we recommend using the transfer acquisition
framework for hyperparameter optimization, as it is fast and powerful in de-
livering well-performing hyperparameter configurations.

Possible future work involves the consideration of learning curves. As men-
tioned in the related work section, there exist many approaches which use
the convergence behavior of the learning algorithm to predict the final per-
formance. This prediction itself will help improving our method. Additionally,
learning curve forecasting methods will benefit from observations on other data
sets. Furthermore, we want to investigate the case where one is not solely in-
terested in reducing the loss of a predictor but also other cost such as training,
prediction or hardware constraints [1] which is relevant for edge devices. We
saw in our experiments that trying to minimize the classification error only
regardless of the training time needed can lead to non-optimal results. There-
fore, we are considering to minimize a loss function which is a combination of
classification error and training time as suggested by Abdulrahman et al. [1].
Finally, we want to conduct experiments to see whether our method is able to
be migrated to deep learning methods.

Acknowledgements We would like to thank Prof. Pavel Brazdil and the anonymous re-
viewers for their valuable feedback that helped us improving this work. We are grateful for
Bradley Baker’s help in perfecting our paper. We acknowledge the co-funding of our work
by the German Research Foundation (DFG) under grant SCHM 2583/6-1.

References

1. Abdulrahman, S.M., Brazdil, P., van Rijn, J.N., Vanschoren, J.: Speeding up algorithm
selection using average ranking and active testing by introducing runtime. in Special
Issue on Metalearning and Algorithm Selection, P.Brazdil and C.Giraud-Carrier (eds),
Machine Learning Journal, Vol. 107:1 (2018)

2. Bardenet, R., Brendel, M., Kégl, B., Sebag, M.: Collaborative hyperparameter tuning.
In: Proceedings of the 30th International Conference on Machine Learning, ICML 2013,
Atlanta, GA, USA, 16-21 June 2013, pp. 199–207 (2013)

3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach.
Learn. Res. 13, 281–305 (2012)

4. Brazdil, P., Giraud-Carrier, C.G., Soares, C., Vilalta, R.: Metalearning - Applications to
Data Mining. Cognitive Technologies. Springer (2009). DOI 10.1007/978-3-540-73263-1.
URL http://dx.doi.org/10.1007/978-3-540-73263-1

5. Cavazos, J., O’Boyle, M.F.P.: Method-specific dynamic compilation using logistic re-
gression. In: Proceedings of the 21th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2006, October
22-26, 2006, Portland, Oregon, USA, pp. 229–240 (2006)

6. Cawley, G.C.: Model selection for support vector machines via adaptive step-size tabu
search. In: Proceedings of the International Conference on Artificial Neural Networks
and Genetic Algorithms (2001)

7. Chapelle, O., Vapnik, V., Bengio, Y.: Model selection for small sample regression. Ma-
chine Learning 48(1-3), 9–23 (2002)

Scalable Transfer Surrogates for Hyperparameter Optimization 39

8. Corani, G., Benavoli, A., Demsar, J., Mangili, F., Zaffalon, M.: Statistical comparison
of classifiers through bayesian hierarchical modelling. CoRR abs/1609.08905 (2016).
URL http://arxiv.org/abs/1609.08905

9. Czogiel, I., Luebke, K., Weihs, C.: Response surface methodology for optimizing hyper
parameters. Tech. rep. (2006). https://eldorado.tu-dortmund.de/bitstream/2003/
22205/1/tr09-06.pdf

10. Deisenroth, M.P., Ng, J.W.: Distributed gaussian processes. In: International Conference
on Machine Learning (ICML), vol. 2, p. 5 (2015)

11. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. Journal of
Machine Learning Research 7, 1–30 (2006). URL http://www.jmlr.org/papers/v7/
demsar06a.html

12. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparameter op-
timization of deep neural networks by extrapolation of learning curves. In: Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, pp. 3460–3468 (2015)

13. Eggensperger, K., Lindauer, M., Hoos, H.H., Hutter, F., Leyton-Brown, K.: Efficient
benchmarking of algorithm configuration procedures via model-based surrogates. in
Special Issue on Metalearning and Algorithm Selection, P.Brazdil and C.Giraud-Carrier
(eds), Machine Learning Journal, Vol. 107:1 (2018)

14. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Effi-
cient and robust automated machine learning. In: Advances in Neural Information Pro-
cessing Systems 28: Annual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pp. 2962–2970 (2015). URL http:
//papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning

15. Feurer, M., Springenberg, J.T., Hutter, F.: Using meta-learning to initialize bayesian
optimization of hyperparameters. In: ECAI workshop on Metalearning and Algorithm
Selection (MetaSel), pp. 3–10 (2014)

16. Feurer, M., Springenberg, J.T., Hutter, F.: Initializing bayesian hyperparameter opti-
mization via meta-learning. In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA., pp. 1128–1135 (2015)

17. Foo, C.s., Do, C.B., Ng, A.: Efficient multiple hyperparameter learning for log-linear
models. In: Advances in neural information processing systems, pp. 377–384 (2007)

18. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in the
analysis of variance. Journal of the American Statistical Association 32(200), 675–701
(1937). DOI 10.1080/01621459.1937.10503522

19. Friedman, M.: A comparison of alternative tests of significance for the problem of m
rankings. The Annals of Mathematical Statistics 11(1), 86–92 (1940)

20. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. Neurocom-
puting 64, 107–117 (2005)

21. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple svm parameters. Neurocomput.
64, 107–117 (2005). DOI 10.1016/j.neucom.2004.11.022

22. Gomes, T.A.F., Prudêncio, R.B.C., Soares, C., Rossi, A.L.D., Carvalho, A.C.P.L.F.:
Combining meta-learning and search techniques to select parameters for support vector
machines. Neurocomputing 75(1), 3–13 (2012). DOI 10.1016/j.neucom.2011.07.005.
URL http://dx.doi.org/10.1016/j.neucom.2011.07.005

23. Guo, X.C., Yang, J.H., Wu, C.G., Wang, C.Y., Liang, Y.C.: A novel ls-svms hyper-
parameter selection based on particle swarm optimization. Neurocomput. 71(16-18),
3211–3215 (2008). DOI 10.1016/j.neucom.2008.04.027

24. Hinton, G.: A practical guide to training restricted boltzmann machines. Momentum
9(1) (2010)

25. Hinton, G.E.: Products of experts. In: Artificial Neural Networks, 1999. ICANN 99.
Ninth International Conference on (Conf. Publ. No. 470), vol. 1, pp. 1–6. IET (1999)

26. Hoffman, M.D., Shahriari, B., de Freitas, N.: On correlation and budget constraints in
model-based bandit optimization with application to automatic machine learning. In:
Proceedings of the Seventeenth International Conference on Artificial Intelligence and
Statistics, AISTATS 2014, Reykjavik, Iceland, April 22-25, 2014, pp. 365–374 (2014)

27. Holmes, G., Donkin, A., Witten, I.H.: Weka: A machine learning workbench. In: Intel-
ligent Information Systems, 1994. Proceedings of the 1994 Second Australian and New
Zealand Conference on, pp. 357–361. IEEE (1994)

40 Martin Wistuba et al.

28. Hutter, F., Hoos, H.H., Leyton-Brown, K.: Sequential model-based optimization for
general algorithm configuration. In: Proceedings of the 5th International Conference on
Learning and Intelligent Optimization, LION’05, pp. 507–523. Springer-Verlag, Berlin,
Heidelberg (2011)

29. Jamieson, K.G., Talwalkar, A.: Non-stochastic best arm identification and hyperparam-
eter optimization. In: Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, AISTATS 2016, Cadiz, Spain, May 9-11, 2016, pp. 240–248
(2016). URL http://jmlr.org/proceedings/papers/v51/jamieson16.html

30. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-
box functions. J. of Global Optimization 13(4), 455–492 (1998). DOI 10.1023/A:
1008306431147

31. Kamel, M.S., Enright, W.H., Ma, K.S.: ODEXPERT: an expert system to select nu-
merical solvers for initial value ODE systems. ACM Trans. Math. Softw. 19(1), 44–62
(1993)

32. Kanda, J., Soares, C., Hruschka, E.R., de Carvalho, A.C.P.L.F.: A meta-learning ap-
proach to select meta-heuristics for the traveling salesman problem using mlp-based la-
bel ranking. In: Neural Information Processing - 19th International Conference, ICONIP
2012, Doha, Qatar, November 12-15, 2012, Proceedings, Part III, pp. 488–495 (2012)

33. Kapoor, A., Ahn, H., Qi, Y., Picard, R.W.: Hyperparameter and kernel learning for
graph based semi-supervised classification. In: Advances in Neural Information Pro-
cessing Systems, pp. 627–634 (2005)

34. Keerthi, S., Sindhwani, V., Chapelle, O.: An efficient method for gradient-based adap-
tation of hyperparameters in SVM models. Twenty-First Annual Conference on Neural
Information Processing Systems (2007). Vancouver, Canada

35. Kendall, M.G.: A New Measure of Rank Correlation. Biometrika 30(1/2), 81–93 (1938).
DOI 10.2307/2332226

36. Larochelle, H., Erhan, D., Courville, A., Bergstra, J., Bengio, Y.: An empirical evalua-
tion of deep architectures on problems with many factors of variation. In: Proceedings
of the 24th International Conference on Machine Learning, pp. 473–480. ACM (2007)

37. Leite, R., Brazdil, P., Vanschoren, J.: Selecting classification algorithms with active test-
ing. In: Machine Learning and Data Mining in Pattern Recognition - 8th International
Conference, MLDM 2012, Berlin, Germany, July 13-20, 2012. Proceedings, pp. 117–131
(2012)

38. Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technologies.
Artif. Intell. Rev. 44(1), 117–130 (2015). DOI 10.1007/s10462-013-9406-y. URL http:
//dx.doi.org/10.1007/s10462-013-9406-y

39. Li, L., Jamieson, K.G., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Efficient hyper-
parameter optimization and infinitely many armed bandits. CoRR abs/1603.06560
(2016). URL http://arxiv.org/abs/1603.06560

40. Maron, O., Moore, A.W.: The racing algorithm: Model selection for lazy learners. Artif.
Intell. Rev. 11(1-5), 193–225 (1997). DOI 10.1023/A:1006556606079. URL https:
//doi.org/10.1023/A:1006556606079

41. Masada, T., Fukagawa, D., Takasu, A., Hamada, T., Shibata, Y., Oguri, K.: Dynamic
hyperparameter optimization for bayesian topical trend analysis. In: Proceedings of the
18th ACM Conference on Information and Knowledge Management, pp. 1831–1834.
ACM (2009)

42. McQuarrie, A.D., Tsai, C.L.: Regression and time series model selection. World Scientific
(1998)

43. Michie, D., Spiegelhalter, D.J., Taylor, C.C., Campbell, J. (eds.): Machine Learning,
Neural and Statistical Classification. Ellis Horwood, Upper Saddle River, NJ, USA
(1994)

44. Nadaraya, E.A.: On estimating regression. Theory of Probability & Its Applications
9(1), 141–142 (1964). DOI 10.1137/1109020. URL https://doi.org/10.1137/1109020

45. Nareyek, A.: Choosing Search Heuristics by Non-Stationary Reinforcement Learning,
pp. 523–544. Springer US, Boston, MA (2004)

46. Nemenyi, P.: Distribution-free multiple comparisons. In: Biometrics, vol. 18, p. 263.
INTERNATIONAL BIOMETRIC SOC 1441 I ST, NW, SUITE 700, WASHINGTON,
DC 20005-2210 (1962)

Scalable Transfer Surrogates for Hyperparameter Optimization 41

47. Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Meta-learning by landmarking various
learning algorithms. In: In Proceedings of the Seventeenth International Conference on
Machine Learning, pp. 743–750. Morgan Kaufmann (2000)

48. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press (2005)

49. Reif, M., Shafait, F., Dengel, A.: Meta-learning for evolutionary parameter optimization
of classifiers. Machine Learning 87(3), 357–380 (2012). DOI 10.1007/s10994-012-5286-7

50. Rendle, S.: Factorization machines. In: Data Mining (ICDM), 2010 IEEE 10th Interna-
tional Conference on, pp. 995–1000. IEEE (2010)

51. Rice, J.R.: The algorithm selection problem. Advances in Computers 15, 65–118
(1976). DOI 10.1016/S0065-2458(08)60520-3. URL http://dx.doi.org/10.1016/
S0065-2458(08)60520-3

52. Schilling, N., Wistuba, M., Drumond, L., Schmidt-Thieme, L.: Hyperparameter opti-
mization with factorized multilayer perceptrons. In: Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML PKDD 2015, Porto, Portugal,
September 7-11, 2015. Proceedings, Part II (2015)

53. Schilling, N., Wistuba, M., Schmidt-Thieme, L.: Scalable hyperparameter optimization
with products of gaussian process experts. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 33–48. Springer International
Publishing (2016)

54. Schneider, P., Biehl, M., Hammer, B.: Hyperparameter learning in probabilistic
prototype-based models. Neurocomputing 73(7), 1117–1124 (2010)

55. Seeger, M.: Cross-validation optimization for large scale hierarchical classification kernel
methods. In: Advances in neural information processing systems, pp. 1233–1240 (2006)

56. Smith-Miles, K.A.: Cross-disciplinary perspectives on meta-learning for algorithm se-
lection. ACM Comput. Surv. 41(1), 6:1–6:25 (2009). DOI 10.1145/1456650.1456656.
URL http://doi.acm.org/10.1145/1456650.1456656

57. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine
learning algorithms. In: Advances in Neural Information Processing Systems 25: 26th
Annual Conference on Neural Information Processing Systems 2012. Proceedings of a
meeting held December 3-6, 2012, Lake Tahoe, Nevada, United States., pp. 2960–2968
(2012)

58. de Souza, B.F., de Carvalho, A., Calvo, R., Ishii, R.P.: Multiclass SVM model selec-
tion using particle swarm optimization. In: Sixth International Conference on Hybrid
Intelligent Systems, 2006. HIS’06. , pp. 31–31. IEEE (2006)

59. Srinivas, N., Krause, A., Kakade, S., Seeger, M.W.: Gaussian process optimization in
the bandit setting: No regret and experimental design. In: Proceedings of the 27th
International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa,
Israel, pp. 1015–1022 (2010)

60. Sun, Q., Pfahringer, B.: Pairwise meta-rules for better meta-learning-based algorithm
ranking. Machine Learning 93(1), 141–161 (2013)

61. Swersky, K., Snoek, J., Adams, R.P.: Multi-task bayesian optimization. In: Advances
in Neural Information Processing Systems 26: 27th Annual Conference on Neural Infor-
mation Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013,
Lake Tahoe, Nevada, United States., pp. 2004–2012 (2013)

62. Swersky, K., Snoek, J., Adams, R.P.: Freeze-thaw bayesian optimization (2014)
63. Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-weka: Combined se-

lection and hyperparameter optimization of classification algorithms. In: Proceed-
ings of the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’13, pp. 847–855. ACM, New York, NY, USA (2013). DOI
10.1145/2487575.2487629

64. Tsochantaridis, I., Hofmann, T., Joachims, T., Altun, Y.: Support vector machine learn-
ing for interdependent and structured output spaces. In: Proceedings of the twenty-first
international conference on Machine learning, p. 104. ACM (2004)

65. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell.
Rev. 18(2), 77–95 (2002). DOI 10.1023/A:1019956318069. URL http://dx.doi.org/
10.1023/A:1019956318069

42 Martin Wistuba et al.

66. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Learning data set similarities for hy-
perparameter optimization initializations. In: Proceedings of the 2015 International
Workshop on Meta-Learning and Algorithm Selection, Porto, Portugal, September 7th,
2015., pp. 15–26 (2015)

67. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Learning hyperparameter optimization
initializations. In: International Conference on Data Science and Advanced Analytics,
DSAA 2015, Paris, France, October 19 - 21, 2015 (2015)

68. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Sequential model-free hyperparameter
tuning. In: 2015 IEEE International Conference on Data Mining, ICDM 2015, Atlantic
City, NJ, USA, November 14-17, 2015, pp. 1033–1038 (2015). DOI 10.1109/ICDM.2015.
20

69. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Two-stage transfer surrogate model for
automatic hyperparameter optimization. In: Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pp. 199–214. Springer International
Publishing (2016)

70. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: Portfolio-based Algorithm
Selection for SAT. J. Artif. Intell. Res. (JAIR) 32, 565–606 (2008)

71. Yogatama, D., Mann, G.: Efficient transfer learning method for automatic hyperpa-
rameter tuning. In: International Conference on Artificial Intelligence and Statistics
(AISTATS 2014) (2014)

