
Joint Model Choice and Hyperparameter Optimization
with Factorized Multilayer Perceptrons

Nicolas Schilling, Martin Wistuba, Lucas Drumond and Lars Schmidt-Thieme
University of Hildesheim

Information Systems and Machine Learning Lab
Hildesheim, Germany

Email: {schilling, wistuba, ldrumond, schmidt-thieme}@ismll.uni-hildesheim.de

Abstract—Recent work has demonstrated that hyperparam-
eter optimization within the sequential model-based optimiza-
tion (SMBO) framework is generally possible. This approach
replaces the expensive-to-evaluate function that maps hyperpa-
rameters to the performance of a learned model on validation
data by a surrogate model which is much cheaper to evaluate.
The current state of the art in hyperparameter optimization
learns these surrogate models across a variety of solved data
sets where a grid search has already been employed. In this
way, surrogate models are learned across data sets, and thus
able to generalize better. However, meta features that describe
characteristics of a data set are usually needed in order for the
surrogate model to differentiate between same hyperparameter
configurations on different data sets. Another research area
that is closely related focuses on model choice, i.e. picking the
right model for a given task, which is also a problem that many
practitioners face in machine learning.

In this paper, we aim to solve both of these problems with a
unified surrogate model that learns across different data sets,
different classifiers and their respective hyperparameters. We
employ factorized multilayer perceptrons, a surrogate model
that consists of a multilayer perceptron architecture, but offers
the prediction of a factorization machine in the first layer. In
this way, data sets, models and hyperparameters are being
represented in a joint lower dimensional latent feature space.
Experiments on a publicly available meta data set containing
59 individual data sets and 19 prediction models demonstrate
the efficiency of our approach.

Keywords-Hyperparameter Optimization; Model Choice; Se-
quential Model-Based Optimization

I. INTRODUCTION

One of the largest obstacles that keeps practitioners from
applying machine learning is to choose the right prediction
model for the task to be solved. Each model has its advan-
tages and disadvantages, and only experienced practitioners
know which model is best suited for which task. Thus, the
problem of model choice is apparent everywhere in applied
machine learning.

On top of that, these prediction models contain hyper-
parameters which have to be set before learning, as they
cannot be optimized using standard optimization methods
such as gradient descent. This is due to several reasons, for
example for hyperparameters being discrete and therefore

not learnable with continuous optimization methods. How-
ever, also the objective function to be minimized needs to
be expressed explicitly with respect to the hyperparameters,
which in many cases is simply not possible. There is a huge
variety of different hyperparameters but what they all share
is the fact that there is no general approach to optimize them
which causes many researchers to perform hyperparameter
optimization on a pre-defined grid of fixed hyperparameter
values. Obviously, this leads to many runs of the machine
learning algorithm and therefore is computationally infeasi-
ble for models that have a high dimensional hyperparameter
space.

Usually, experienced researchers know which model is
suited best for which task and also which regions in hy-
perparameter space offer promising validation performance.
This knowledge is usually obtained from applying the same
model to a variety of different data sets and assessing
the final validation performance. In this paper, we seek
to directly learn this kind of knowledge across data sets
by associating latent features to hyperparameters, models
and data sets. We extend previous work [1] on factorized
multilayer perceptrons to also take into account model
choice and present results in a standard sequential model-
based optimization setting as well as give insight into the
models that have been chosen frequently.

II. RELATED WORK

To enable a wide audience to employ machine learning in
their applications, research on hyperparameter optimization
as well as model choice has been conducted in the last
years. We review the related work on both hyperparameter
optimization and model choice.

The most widely used method for hyperparameter opti-
mization is probably a grid search, where a discrete subset
of the hyperparameter space is created and validation per-
formance of hyperparameters is assessed on this grid only.
This is apparently not efficient, as a lot of useless results
are produced and discarded in the end, an effort that can
usually only be conducted on compute clusters which are
not accessible for everyone. A more sophisticated variant of

grid search is the random search [2], which samples hyper-
parameters according to pre-defined probability distributions
and is supposed to work well in cases of low effective
dimensionality when the validation performance is sensitive
in only some dimensions of the hyperparameter space.

Another class of hyperparameter optimization methods
bases on strong assumptions such as the specific choice of
a model. Two instances, that work for the specific model
choice of an SVM are for instance [3] and [4]. In the case
of graph based semi-supervised learning, hyperparameters
can be optimized using [5]. In cases of regression with a
very small sample size, [6] may be applied. There are many
approaches that are based on strong assumptions such as a
specific model choice, however, they all have the common
disadvantage of not being applicable in general.

A third class of hyperparameter optimization methods is
based on artificial intelligence algorithms. For example, [7]
optimizes SVM Kernel hyperparameters, [8] is based on
evolutionary algorithms whereas [9] employs particle swarm
optimization.

Finally, the most recent research on hyperparameter opti-
mization employs the Sequential Model-Based Optimization
(SMBO) framework [10]. SMBO methods learn a surrogate
model on already observed hyperparameter performances
to ultimately predict a new hyperparameter configuration
to test. This choice is based on the predicted performance
as well as the uncertainty of the surrogate model for that
very hyperparameter configuration. Spearmint [11] employs
Gaussian processes as surrogate model, whereas SMAC uses
a random forest [12]. Several proposals have been made
to incorporate meta knowledge from previously solved data
sets, for example [13] learns an initialization strategy based
on meta features, [14] employs active testing on observed
hyperparameter performance. The work of [15] proposes
to learn a ranking SVM on hyperparameter performances
whose predictions are then used in a Gaussian process,
whereas [16] uses a Gaussian process with a Kernel function
that also models the distance of different tasks to each
other. All Gaussian process approaches suffer the mutual
disadvantage that for large meta data sets they are not
applicable anymore as the kernel matrix grows too big to
store. Another common downside of many of these models
is that they rely on meta features to prevent confusion
of the surrogate model with same hyperparameter config-
urations across different data sets. Finally, our previous
work [1] learns a multilayer perceptron with an additional
factorization term in the first layer to directly learn latent
representations for hyperparameters and tasks, which make
meta features obsolete.

The most prominent work on model choice and automated
machine learning is probably Auto-WEKA [17], which uses
a random forest based on [12] and introduces a meta data
set containing the performance of a plethora of prediction
models on 21 data sets. Moreover, multi armed bandits are

Figure 1. Response surface of an RBF Support Vector Machine on the
Iris data set. Validation Accuracy is plotted against two hyperparameters,
the choice of tradeoff parameter C and the kernel width γ (Best viewed in
color)

employed [18] in the field of model choice. A very close
work that also proposes to learn latent features for algorithm
choice is [19], where the latent representation is learned
using Singular Value Decomposition. However, their work
is more fictional as they do not consider hyperparameters
and therefore learn the latent representation only after all
algorithms have finished, which then of course is not needed
anymore.

We seek to treat both problems, hyperparameter optimiza-
tion and model choice as the same problem. In this way,
we can map prediction models as well as hyperparameters
and tasks into one joint latent feature space from which
interactions can be estimated and used in a cross data set,
cross model surrogate.

III. BACKGROUND

In this section, we will first give a brief definition of
hyperparameter optimization and model choice. Afterwards,
we review the sequential model-based optimization (SMBO)
framework and present our choice of surrogate model.

A. Hyperparameter Optimization
Let us denote by D the set of all data sets. Then, following

the notation by [2], for a general but fixed model class
M, a machine learning algorithm A, parametrized by some
hyperparameters λ ∈ Λ is defined as mapping

Aλ : D −→ Mλ , (1)

that maps training data Dtrain to a learned model Mλ under
consideration of the hyperparameters λ. Note that the model

class M does not necessarily have to depend on λ, however,
in many cases λ also defines the model’s complexity. In most
cases, Λ is the direct product of individual hyperparameter
spaces, i.e. Λ = Λ1×. . .×Λp. Usually, Aλ searches through
the model space Mλ and picks the model Mλ with lowest
objective function

Aλ(D) = arg min
Mλ∈Mλ

L(Mλ, D) +R(Mλ) , (2)

where L(Mλ, D) is a loss functional and R(Mλ) is a reg-
ularization term. The hyperparameter optimization problem
is then defined as finding the optimal hyperparameter λ∗,
where the resulting model after learning minimizes the loss
L on a given validation set.

λ∗ = arg min
λ∈Λ

L(Aλ(D
train), Dval) (3)

In Figure 1, validation accuracy is plotted for an RBF-SVM
for the hyperparameters tradeoff C and kernel width γ on
the well-known Iris data set from the UCI repository1. We
denote the function that maps hyperparameters to a learned
model and then evaluates the learned model on validation
data by the function f , i.e. in the above equation we replace

f(D,λ) = L(Aλ(D
train), Dval) . (4)

The observations of f are called hyperparameter response
or validation performance throughout this paper.

For simplicity, the reader may consider a linear regression
model learned by gradient descent for the notation presented
above. Then, M = Rk for a linear regression on k − 1
features plus an additional bias term and λ can be denoted
as λ = (µ, ν) consisting of regularization constant µ > 0
and learning rate ν > 0. Consequently, L is the Root Mean
Squared Error (RMSE) and f would map a data set and
hyperparameters to the RMSE error of a learned model on
the validation part of the data set.

B. Model Choice

Using the notation defined above, we can write down the
problem of model choice in the same manner. Given a set of
n algorithms with fixed model class {A1, . . . ,An} to learn,
the problem of model choice can be stated as finding the
algorithm A∗ where the resulting model has minimal error
on validation data.

A∗ = arg min
A∈{A1,...,An}

L(A(Dtrain), Dval) (5)

As both problems are very similar, we seek to denote
them as one joint problem. This can be done by letting λ
also describe the choice of model, then we return to the
hyperparameter optimization but would care specifically for
only one dimension of λ.

1https://archive.ics.uci.edu/ml/datasets/Iris

C. Sequential Model-Based Optimization

As f involves calling the whole learning algorithm and
assessing the resulting validation performance, direct eval-
uation of f is usually very expensive, therefore black-
box optimization may be readily applied. Suppose we have
observed f on a discrete subset G ⊂ Λ of the hyperparam-
eter space, and let us denote the set of already observed
tuples by H. Then, instead of querying f at certain points,
SMBO learns a surrogate model Ψ ≈ f to predict the
response of f for unknown hyperparameter configurations,
and use its predictions to choose a next hyperparameter
configuration to test. Usually, predictions of Ψ are then fed
into an acquisition function that seeks for an optimal trade-
off between exploitation and exploration. On the one hand,
exploitation means that only hyperparameter configurations
in well-known regions of f are chosen, which might lead
to finding only local optima in hyperparameter space. Ex-
ploration, on the other hand, means that also regions of
Λ are chosen where the surrogate Ψ is really uncertain
and therefore improvement might be large. As acquisition
function, the Expected Improvement (EI) [10] is the most
widely used, however, there exist other acquisition functions
such as probability of improvement [10], conditional entropy
of the minimizer [20] or multi armed bandit based criteria
[21]. Afterwards, the new hyperparameter configuration is
evaluated and the observation is added to the current obser-
vation history H. In the end, after T many iterations the
best hyperparameter configuration found is returned. The
resulting algorithm is sketched in Algorithm 1. Note that
we use now x instead of λ, as usually the feature vector
is augmented by additional features describing meta entities
such as the current data set and model choice.

Algorithm 1 Sequential Model-based Optimization
Input: Hyperparameter space Λ, observation history H,

target data set Dnew, number of iterations T , acquisition
function a, surrogate model Ψ.

Output: Best hyperparameter configuration xbest for Dnew

1: for t = 1 to T do
2: Fit Ψ to H
3: xnew = arg max

x
a (x,Ψ(x))

4: Evaluate f (xnew, Dnew)
5: if f(xnew, Dnew) > f(xbest, Dnew) then
6: xbest = xnew

7: H = H ∪ (xnew, f (xnew, Dnew))
8: return xbest

D. Involving Meta Knowledge

As was already mentioned above, the SMBO procedure is
not limited to the current data set on which hyperparameter
optimization is being conducted. Before starting SMBO,
we may already have observed hyperparameter performance

for learning the same model on a different data set. This
is possibly valuable information for a surrogate model, as
usually hyperparameter performance does not change too
drastically for different data sets. However, for a fixed
choice of model the hyperparameter space is also fixed,
and therefore the observation history across data sets would
contain a lot of instances with exactly the same features but
a different label, which possibly only confuses the surrogate
model.

To overcome this problem, meta features that are supposed
to describe the relevant characteristics of a data set have
been derived [22] and been used for example in collaborative
hyperparameter tuning [15] and for a faster hyperparameter
optimization through a smarter initialization [13]. These
features can be very simple statistics such as number of
classes in a classification problem, number of instances,
number of features and so on. However, meta features
can also be more computationally demanding, such as the
prediction accuracy of a simple linear model, usually they
are then called landmark features [23]. One problem of meta
features is that up to now it is not entirely clear which meta
features are helpful and which are not, the hope is usually
that some help and the surrogate model performs a feature
selection automatically. Moreover, meta features as defined
above are dependent on the task, for example the distribution
of classes has no meaning in case of a regression task and
therefore cannot be applied in general.

If we consider model choice, we might not face this prob-
lem as models usually have different hyperparameters and
therefore features change depending on the model choice.
In general, however, this is not true and therefore we have
to think of ways of making observations also distinctive
for different models. Following the road of meta features,
we could now start to think of meta features that describe
models, such as if the model is linear or nonlinear and so on.
However, in this case we have to define new meta features
for every model, if we continue and want to generalize
not only over data sets and model choice but for instance
preprocessing as well, we have to start over again and define
these features for the new entity we want to generalize over.
Clearly, this does not seem to be the optimal strategy.

Another way to overcome the problem of same but differ-
ently labeled instances is to add binary categorical features
that encode directly to which data set or model choice the
observation can be mapped. Thus, for a set {D1, . . . , Dn} of
observed data sets and a set of {M1, . . . ,Mm} prediction
models, we augment the input of f by a variable x which
then also carries information about the data set and the
prediction model involved

x = (λ, δ, µ) . (6)

The variables δ and µ are defined as

δ(Dj) = (δ1, ..., δn) δi = 1(i = j) , (7)

and in a very analogous way

µ(Mj) = (µ1, ..., µn) µi = 1(i = j) , (8)

where 1 attains the value 1 if its predicate is true and
0 otherwise. This is probably the simplest but also most
uninformative meta feature that we can think of. In case of
a standard regression model as surrogate we would only be
able to learn a bias for the as well as for model choice,
respectively. However, we argue that by associating latent
features to these variables and optimizing for them, we are
able to directly learn latent characteristics of the entity we
want to generalize over. In this way, we are also able to
model interactions between all entities.

E. Factorized Multilayer Perceptrons

In [1], we have proposed to use factorized multilayer
perceptrons (FMLP) for hyperparameter optimization. They
basically are a feedforward multilayer perceptron but instead
of linear signals forward the prediction of a factorization
machine [24] in the input layer. Let us denote by wl

ik ∈ R
the weight that maps the i-th input to the k-th neuron in layer
l, and by vlik ∈ RK we define the K-dimensional vector of
latent features that maps the i-th input to the k-th neuron in
layer l. Then, we write

slk = wl
0k+

n∑
i=1

wl
ikx

l−1
i +

1

2

n∑
i=1

n∑
j=i+1

⟨vlik, vljk⟩xl
ix

l
j , (9)

as signal function for l = 1 and for subsequent layers, we
use the regular perceptrons

slk = wl
0k +

n∑
i=1

wl
ikx

l−1
i . (10)

The input for the next layer is then computed by applying
a sigmoid function to the signals

xl
k = σ(slk) , (11)

where we use the logistic function σ(t) = (1+exp(−t))−1.
As the categorical indicator variables are only given in the
input layer we restrict the model to factorize regression
weights only in the first layer. In this way, we combine the
approximation quality of a complex nonlinear model such as
multilayer perceptrons with the latent feature representation
that a factorization is capable to model. As our previous
work shows [1], using only factorization machines does
not show strong performance as the prediction model is
simply not complex enough to model arbitrary hyperparam-
eter response surfaces. We learn FMLPs using the famous
backpropagation algorithm [25] for the Root Mean Squared
Error, which requires one forward and one backward pass
through the network to update all model parameters.

The resulting optimization procedure is given in algorithm
2. Note that we dropped the dependency on the layer for
the update of latent features and use the upper index to

Algorithm 2 SGD-Backpropagation for Factorized Multi-
layer Perceptron
Input: Data Set D, Loss function L, step length η > 0.

1: Initialize v and w
2: repeat
3: Draw (x, y) ∈ D
4: Predict ŷ(x)
5: Compute δlk = ∂L(ŷ(x),y)

∂slk
· dσ
dslk

for all layers l and
neurons k

6: Update wl
i,k = wl

i,k − ηδlkxi for all layers l and
neurons k

7: For the input layer l = 1:
Precompute µk

j =
∑n

i=1 v
(k)
i,j xi

Update v
(k)
i,j = v

(k)
i,j − ηδlk(xiµ

k
j − v

(k)
i,j x

2
i)

8: until Convergence
9: return (w, v)

denote individual elements of a latent feature vector vik.
In our implementation, we also use update parameters with
respect to a momentum term, this has been dropped to avoid
unnecessary clutter. We use a Gaussian initialization cen-
tered around 0 for latent features v and the Nguyen-Widrow
initialization [26] for the weights w, as it empirically results
in faster convergence of the whole network.

IV. EXPERIMENTS

In this section, we first present the meta data set, then
discuss experiment setups, competing surrogate models and
in the end present the results.

A. Meta Data Set Creation

For assessing empirical evidence, we created a large meta
data set that encompasses 59 classification data sets. If splits
were already existing, we merged the given data and created
one split where 80% have been used for training and the
remaining 20% have been used to obtain test performance.
From now on, let us denote the set of observed data sets
by D. As the task is classification, f(λ,D) models the
classification accuracy of a learned classifier with given
hyperparameters λ on the validation partition of D. More-
over, we applied 19 different prediction models for the
classification task by using WEKA [27]. An overview of
employed prediction models is given in Figure 3. For a
more detailed overview over data sets and hyperparameter
grids that have been chosen, we refer the reader to our
supplementary web page [28], where also the full meta
data set and program code (Java) can be downloaded for
reproduction purposes. For a fixed data set, in total we have
conducted 21, 871 experiments, which for 59 experiments
leads to a total number of approximately 1.29 million
observed instances.

B. Competing Methods

We give a brief overview over all competing surrogate
models.

1) Independent Gaussian Process (I-GP): This tuning
strategy learns a Gaussian Process with squared exponential
automatic relevance determination (SE-ARD) kernel [11],
independent from observations on all the other data sets.
Uncertainty is assessed by using the predictive posterior
distribution.

2) Independent Random Forest (I-RF): This tuning strat-
egy learns a Random Forest as proposed in [12] and which
is also used by AUTO WEKA [17]. As well as the I-GP,
it is learned independently from observations on other data
sets. It consists of 100 individual decision trees, uncertainty
is obtained by computing the sample variance.

3) Random Forest (RF): This tuning strategy learns a
Random Forest with additional data set and model indicator
variables to allow generalization over data sets and model
choices. Again, 100 individual trees are learned and uncer-
tainty is assessed using the sample variance.

4) Factorized Multilayer Perceptron (FMLP): This tun-
ing strategy is the one we propose in [1] and in section and
show how it can be augmented to learn across models in
section III-E. It embeds hyperparameters, models and data
set characteristics into a joint latent feature space. Similar to
random forests, we compute an averaging ensemble of 100
models and use the sample mean and variance as prediction
and uncertainty.

C. Average Normalized Accuracy

We start by normalizing accuracies f with respect to the
best and worst configuration found so far for a fixed data
set D:

f̃(λ,D) =
f(λ)− fmin(D)

fmax(D)− fmin(D)
(12)

By normalizing the individual accuracies per data set we
obtain normalized accuracies f̃ , which range from 0 to 1 but
more importantly are comparable between different data sets.
Average normalized accuracy sums up the best normalized
accuracies that were found on every data set and in the end
averages them.

avgAcc =
1

|D|

|D|∑
i=1

max
{
f̃(λ,Di)

}
(13)

This evaluation metric gives an impression of how fast the
SMBO approach finds the maximum accuracy. For average
normalized accuracy, the higher the better.

D. Experiment Setup

We performed a leave one out experiment for each of the
59 data sets being the target data set Dnew once. However,
to account for a more realistic setting we subsampled the
original grid of 21, 871 hyperparameter configurations by

Figure 2. Average Normalized Accuracy is shown versus the number of trials already conducted. Optimal is omited as it is has a constant accuracy (Best
viewed in color).

taking only every third hyperparameter of the training data
into account. For a model with p many hyperparameters, this
reduces the total grid by a factor of (1/3)p, a total of 1, 873
hyperparameter configurations remained for each training
data set. For the test data set, however, we used the full grid.
We argue that this scenario is much more realistic as for the
test data there are infinitely many possible hyperparameter
configurations, an amount which we will never have for
training purposes.

As acquisition function, the expected improvement has
been used, as it currently is the most widely used acquisition
function in SMBO based hyperparameter optimization. For
the data set independent surrogates we performed 1000
repetitions of the experiment as usually the start of the
SMBO procedure shows some random effects. For all other
surrogates, we computed 10 repetitions, as they use meta
knowledge across data sets their initial variance was much
lower. In total, we allowed each SMBO run to query
T = 100 different hyperparameter configurations, which is
relatively tiny compared to the grid size, but if we manage
to find well performing hyperparameter configurations, this
would constitute a great achievement.

The implementation of Gaussian processes with SE-ARD
Kernel was done by ourselves in Java as well as the
implementation of FMLPs. For the random forests, we used
the implementation by MLTK2. GP hyperparameters are
automatically tuned by optimizing the marginal likelihood.
Random forest hyperparameters have been optimized using
leave one out cross validation, whereas the hyperparameters
of the FMLP have been chosen fixed according to previous
experience with the model. We use one hidden layer with
5 neurons, the dimension of the latent feature vectors is
K = 8, and for optimization we use a step size µ = 0.01
and the same value as momentum term.

2http://www.cs.cornell.edu/~yinlou/projects/mltk/

V. RESULTS

Figure 2 shows the development of the average normal-
ized accuracy versus trials of the SMBO algorithm for
all competing methods and a total of 100 trials. In the
beginning, all methods more or less suffer from the cold
start issue, as no observations of the new data set have
been made so far and therefore no such information could
be used in learning the models. As can clearly be seen,
the independent models have quite a bad start with rather
poor accuracy achieved. This, however, makes a lot of sense
considering that they do not employ any meta knowledge at
all. It can also be observed that the random forest which uses
meta knowledge has a much better start than its independent
counterpart, although this advantage fades quite early after
20 to 30 trials. Interestingly, both random forests surrogate
cannot maintain their advantage compared to an independent
Gaussian process, which overtakes them after roughly 15
trials.

Clearly, the FMLP proposes better hyperparameter con-
figuration at a much earlier point in time than all competing
methods. It already starts out at an average normalized
accuracy of almost 0.9, thus reaching already 90% of the
maximum accuracy on average per data set in the first trial.
We believe that this is an amazing result, compared to the
other surrogates where the best one (RF) starts at almost 0.7
average normalized accuracy and the independent surrogates
starting even worse at a value a little above 0.6.

Moreover, after having conducted 100 trials, which
amounts for 0.005% of the hyperparameter grid, we are
able to achieve an average normalized accuracy of almost
0.975 using FMLPs. We argue that this advantage comes
largely from learning latent representations for data sets,
hyperparameters and models. The cold-start issue remains
also for an FMLP, but having learned latent features for all
other entities seems to mitigate this issue to a certain degree.

Bayes Net
Naive Bayes

Logistic
MLP

Simple Logistic
SMO

IBK
KSTAR

Decision Table
RIPPER
ONE_R

PART
ZERO_R

Decision Stump
J48

LMT
Random Forest

Random Tree
REP Tree Hyperparameter Space Ratio

Considered

Percentage (%)

0 10 20 30 40 50

Figure 3. List of employed models. The dark bars indicate the average frequency of chosing a model, whereas the light bars indicate the portion of a
model to the overall hyperparameter space.

Of course, with more observations also the FMLP learns
characteristics of the new data set and therefore improves
with time.

Figure 3 shows a list of employed models and sheds
light on the model choice that an SMBO with FMLPs
performs. The bars for a model indicate the frequency of
how often this model has been chosen as an average over
all experiments (dark), as well as the relative size of the
hyperparameter space of a given model with respect to the
whole hyperparameter space (light). In this way, the white
bars can be understood as probability of choosing a model
with a surrogate model that picks a random hyperparameter
configuration.

As we can see, the FMLP surrogate highly favors the
more complex models such as multilayer perceptrons, ran-
dom forests and Support Vector Machines. Consequently,
it chooses other models less often, for example Decision
Stumps are never considered, which is likely due to their
simplicity and their bad performance on other data sets.
For many other models it seems that a few observations are
already enough to make a decision whether it makes sense
to explore the model’s hyperparameter space even further.
This knowledge across data sets and models is exactly the
knowledge that experienced practitioners have and that we
have sought to learn by applying FMLPs.

VI. CONCLUSION

In this paper, we have shown that a joint optimization of
both hyperparameters and model choice can very effectively
be done by using factorized multilayer perceptrons as sur-
rogate models in the sequential model-based optimization
framework. We conducted experiments on a large meta
optimization data set of 59 individual tasks, solved by 19
different prediction models forming in total a grid of roughly

1.2 million instances. The results show that our proposed
method outperforms competitor methods by a decent margin,
and that a joint learning across data sets and prediction
models is generally possible without the need of any kind
of meta features.

For future work, one may envision also learning across
different tasks, for example across classification and regres-
sion, and possibly ranking. A factorization machine [24],
for instance, can solve all three tasks and employs the
same hyperparameters in every scenario. Thus, a gener-
alization across prediction tasks should also be possible,
again, without defining extra meta features for tasks. We
believe that our research helps non-experienced practitioners
to use the vast area of machine learning for solving their
application problems, and brings the area one step closer to
fully automatized machine learning.

ACKNOWLEDGMENT

The authors gratefully acknowledge the co-funding of
their work by the German Research Foundation (DFG) in the
project Hyperparameter Learning Across Problems (HyLAP)
under grant SCHM 2583/6-1.

REFERENCES

[1] N. Schilling, M. Wistuba, L. Drumond, and L. Schmidt-
Thieme, “Hyperparameter optimization with factorized mul-
tilayer perceptrons.” in Proceedings of European Conference
on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases, 2015.

[2] J. Bergstra and Y. Bengio, “Random search for hyper-
parameter optimization,” J. Mach. Learn. Res., vol. 13, pp.
281–305, Feb. 2012.

[3] S. S. Keerthi, V. Sindhwani, and O. Chapelle, “An efficient
method for gradient-based adaptation of hyperparameters in
svm models,” in Advances in neural information processing
systems, 2006, pp. 673–680.

[4] M. M. Adankon and M. Cheriet, “Model selection for the
LS-SVM. Application to handwriting recognition,” Pattern
Recognition, vol. 42, no. 12, pp. 3264–3270, 2009.

[5] A. Kapoor, H. Ahn, Y. Qi, and R. W. Picard, “Hyperpa-
rameter and kernel learning for graph based semi-supervised
classification,” in Advances in Neural Information Processing
Systems, 2005, pp. 627–634.

[6] O. Chapelle, V. Vapnik, and Y. Bengio, “Model selection for
small sample regression,” Machine Learning, vol. 48, no. 1-3,
pp. 9–23, 2002.

[7] P. Koch, B. Bischl, O. Flasch, T. Bartz-Beielstein, C. Weihs,
and W. Konen, “Tuning and evolution of support vector
kernels,” Evolutionary Intelligence, vol. 5, no. 3, pp. 153–
170, 2012.

[8] F. Friedrichs and C. Igel, “Evolutionary tuning of multiple
svm parameters,” Neurocomput., vol. 64, pp. 107–117, Mar.
2005.

[9] X. C. Guo, J. H. Yang, C. G. Wu, C. Y. Wang, and Y. C.
Liang, “A novel ls-svms hyper-parameter selection based on
particle swarm optimization,” Neurocomput., vol. 71, no. 16-
18, pp. 3211–3215, Oct. 2008.

[10] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” J. of Global
Optimization, vol. 13, no. 4, pp. 455–492, Dec. 1998.

[11] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Advances
in Neural Information Processing Systems 25, F. Pereira,
C. Burges, L. Bottou, and K. Weinberger, Eds. Curran
Associates, Inc., 2012, pp. 2951–2959.

[12] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential
model-based optimization for general algorithm configura-
tion,” in Proceedings of the 5th International Conference on
Learning and Intelligent Optimization, ser. LION’05. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 507–523.

[13] M. Feurer, J. T. Springenberg, and F. Hutter, “Initializing
bayesian hyperparameter optimization via meta-learning,”
Proceedings of the Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence, 2015.

[14] R. Leite, P. Brazdil, and J. Vanschoren, “Selecting classifi-
cation algorithms with active testing,” in Machine Learning
and Data Mining in Pattern Recognition. Springer, 2012,
pp. 117–131.

[15] R. Bardenet, M. Brendel, B. Kegl, and M. Sebag, “Collab-
orative hyperparameter tuning,” in Proceedings of the 30th
International Conference on Machine Learning (ICML-13),
S. Dasgupta and D. Mcallester, Eds., vol. 28, no. 2. JMLR
Workshop and Conference Proceedings, May 2013, pp. 199–
207.

[16] D. Yogatama and G. Mann, “Efficient transfer learning
method for automatic hyperparameter tuning,” in Interna-
tional Conference on Artificial Intelligence and Statistics
(AISTATS 2014), 2014.

[17] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown,
“Auto-weka: Combined selection and hyperparameter opti-
mization of classification algorithms,” in Proceedings of the
19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ser. KDD ’13. New York, NY,
USA: ACM, 2013, pp. 847–855.

[18] M. W. Hoffman, B. Shahriari, and N. de Freitas, “On correla-
tion and budget constraints in model-based bandit optimiza-
tion with application to automatic machine learning.”

[19] Y. Malitsky and B. O’Sullivan, “Latent features for algorithm
selection,” in Seventh Annual Symposium on Combinatorial
Search, 2014.

[20] J. Villemonteix, E. Vazquez, and E. Walter, “An informational
approach to the global optimization of expensive-to-evaluate
functions,” Journal of Global Optimization, vol. 44, no. 4, pp.
509–534, 2009.

[21] N. Srinivas, A. Krause, M. Seeger, and S. M. Kakade,
“Gaussian process optimization in the bandit setting: No
regret and experimental design,” in Proceedings of the 27th
International Conference on Machine Learning (ICML-10),
J. Fürnkranz and T. Joachims, Eds. Omnipress, 2010, pp.
1015–1022.

[22] D. Michie, D. J. Spiegelhalter, and C. C. Taylor, “Machine
learning, neural and statistical classification,” 1994.

[23] B. Pfahringer, H. Bensusan, and C. Giraud-Carrier, “Meta-
learning by landmarking various learning algorithms,” in In
Proceedings of the Seventeenth International Conference on
Machine Learning. Morgan Kaufmann, 2000, pp. 743–750.

[24] S. Rendle, “Factorization machines,” in Data Mining (ICDM),
2010 IEEE 10th International Conference on. IEEE, 2010,
pp. 995–1000.

[25] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
representations by back-propagating errors,” Cognitive mod-
eling, vol. 5, 1988.

[26] D. Nguyen and B. Widrow, “Improving the learning speed
of 2-layer neural networks by choosing initial values of the
adaptive weights,” in Neural Networks, 1990., 1990 IJCNN
International Joint Conference on. IEEE, 1990, pp. 21–26.

[27] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, “The weka data mining software: an update,”
ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10–
18, 2009.

[28] N. Schilling. Supplementary website: http://hylap.org/joint-
model-choice-and-hyperparameter-opt-with-fmlp.

