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Abstract. In machine learning, hyperparameter optimization is a challenging
task that is usually approached by experienced practitioners or in a computation-
ally expensive brute-force manner such as grid-search. Therefore, recent research
proposes to use observed hyperparameter performance on already solved prob-
lems (i.e. data sets) in order to speed up the search for promising hyperparameter
configurations in the sequential model based optimization framework.

In this paper, we propose multilayer perceptrons as surrogate models as they are
able to model highly nonlinear hyperparameter response surfaces. However, since
interactions of hyperparameters, data sets and metafeatures are only implicitly
learned in the subsequent layers, we improve the performance of multilayer per-
ceptrons by means of an explicit factorization of the interaction weights and call
the resulting model a factorized multilayer perceptron. Additionally, we evaluate
different ways of obtaining predictive uncertainty, which is a key ingredient for a
decent tradeoff between exploration and exploitation. Our experimental results on
two public meta data sets demonstrate the efficiency of our approach compared
to a variety of published baselines. For reproduction purposes, we make our data
sets and all the program code publicly available on our supplementary webpage.

Keywords: Hyperparameter Optimization, Sequential Model-Based Optimiza-
tion

1 Introduction

Unfortunately, machine learning models are very rarely parameter-free, as they usually
contain a set of hyperparameters which have to be chosen appropriately on validation
data. As a simple example, the number of latent variables in a matrix factorization can-
not be determined using gradient descent as firstly, it is not explicitly given in the objec-
tive function and secondly is not a continuous but a discrete parameter. Additionally, the
choice of kernel function for an SVM can also be understood as hyperparameter, where
gradient descent approaches fail. Besides being a parameter of learned model, hyper-
parameters can also be part of the objective function, such as regularization constants.
Moreover, they can also be part of the learning algorithm that is used to optimize the
model for the objective function, for example the steplength of a gradient based tech-
nique or the threshold of a stopping criterion. Finally, even the choice of preprocessing
can be viewed as a hyperparameter. Some of these hyperparameters are continuous,



some are categorical, but what they all have in common is that there is no efficient
learning algorithm for them. Therefore many researchers rely on searching them on a
grid, which is computationally very expensive, as with growing data and growing com-
plexity of models the optimization part usually requires a lot of time.

The performance of a model on test data trained with specific hyperparameters de-
pends on the data set where the machine learning model should be learned, and therefore
hyperparameter optimization is usually started from the scratch for each new data set.
Thus, possibly valuable information of past hyperparameter performance on other data
sets is ignored. Recent work proposes to use this information to be able to perform a
more efficient and faster hyperparameter optimization than before [2]]. To accomplish
this, the sequential model-based optimization framework is applied, where a surrogate
model is learned to predict hyperparameter performances in a first step. Then an acqui-
sition function is queried to choose the next hyperparameter to test while maintaining
a reasonable tradeoff between exploration and exploitation. As the prediction of the
surrogate model can be done in constant time, hyperparameters can be optimized in a
controlled way, resulting in less runs of the actual learning algorithm until a promising
configuration is found.

This paper targets the problem of hyperparameter learning and more generally model
selection across different data sets. We propose to use a multilayer perceptron as sur-
rogate model and show how it can be learned to also include hyperparameter perfor-
mances of data sets observed in the past. Additionally, we propose a factorized multi-
layer perceptron that contains a factorization part in the first layer of the network to di-
rectly model interactions of hyperparameters and datasets. For both of these surrogates,
we propose different ways of assessing their uncertainty which is a key ingredient for
hyperparameter optimization in the SMBO framework. Finally, we conduct three differ-
ent experiments, where the first shows the capability of a surrogate model to predict the
response surface. The second experiment compares different ways of estimating predic-
tion uncertainty, and the last demonstrates surrogate performance in a standard SMBO
setting against a variety of published baselines.

2 Related Work

In the recent years, the field of hyperparameter optimization has attracted more and
more interest from the research community. The current state-of-the-art can be roughly
classified into four different method categories.

At first, there are exhaustive methods that search the hyperparameter space exhaus-
tively and therefore are usually conducted on a compute cluster as they are computation-
ally expensive. The most simple and most widely used method is a grid search. Another
exhaustive method was proposed by [3]], where hyperparameters are not sampled on a
grid but using probability distributions and work well in cases of low effective dimen-
sionality, i.e. the case where one hyperparameter does not affect the final performance
as much as others.

Secondly, there are the model-specific methods that optimize hyperparameters for a
specific model choice, such as [[1] and [7]], which is tailored to least squares SVM. For
a regression with small sample size, the work of [5]] can be applied. Furthermore, [[10]



deal with hyperparameter optimization in the case of semi-supervised learning. There
is a plethora of model-specific methods, but their common downside is that they are
tailored to a chosen model class and therefore cannot be applied in general.

A third class of methods to optimize hyperparameter is based on evolutionary al-
gorithms, for instance [11]] optimizes kernel hyperparameters of an SVM and therefore
can be seen as also a model-specific method.

Lastly, a more recent class of hyperparameter optimization methods is based on the
sequential model-based optimization (SMBO) [9] framework which stems from black-
box optimization. The choice of this framework is quite reasonable, as the function
that maps hyperparameters for a given model on a given data set to the final validation
performance is certainly a black-box. All SMBO methods learn a surrogate model on
given hyperparameter choices to infer the performance of unknown hyperparameters,
where the next hyperparameter to test is chosen based on the prediction of the surro-
gate model and its uncertainty. Gaussian processes are used as surrogate model in [19],
but are not used to include hyperparameter performances on other data sets. Moreover,
SMAC [8]] employs random forests as surrogate model, but also does not learn across
data sets. The first paper that proposed to include past hyperparameter performances
for SMBO-based hyperparameter optimization is [2], their method SCoT employs an
SVM Rank as surrogate and uses a second stage Gaussian process that is learned on
the output of SVM Rank to allow for uncertainty in the prediction. Another work uses
past hyperparameter performances to come up with a good initialization for Bayesian
hyperparameter optimization [6]]. The work in [[12] chooses hyperparameters and mod-
els by using active testing on the past observations, which can be seen as SMBO with a
very specific choice of surrogate and acquisition function.

Finally, [21]] uses a Gaussian process with a more sophisticated choice of kernel
function, which is able to generalize over past performances on other data sets, which
is very close to the multi-task Gaussian process approach used by [20].

Compared to exhaustive methods, SMBO algorithms are more efficient in the over-
all number of hyperparameters that have to be evaluated; compared to model-specific
methods, they may be applied for every model choice. Moreover, SMBO algorithms
learn a model for the hyperparameter space, which itself is very interesting as it gives a
deeper understanding of hyperparameter interactions.

3 Background

In this section, we will first introduce the problem setting, to then discuss important
properties of surrogate functions. Afterwards, we propose three new surrogates and
finally show how to assess their prediction uncertainty.

3.1 Problem Setting

Let us define by D the space of all data sets. Furthermore, for a fixed model class M,
let us denote by A, a machine learning algorithm as a mapping Ay : D — M that
maps training data D"™™" € D to a learned model M), € M for a given hyperparameter



configuration A € A by searching through M and finding a model that minimizes:
A (D) := arg min £(M,, D™") . )]

Myem

Usually, A = A; x ... x Ay, where A; may be a continuous or discrete space. Hav-
ing learned a model for a given hyperparameter configuration A, the hyperparameter
optimization problem can be stated as choosing the \*, for which the associated model
M~ has a minimal error on a validation set

M= arg min £(Ay(D"™"), D¥) := arg min f()\) . 2)

xeA AeA

Thus, the problem of hyperparameter optimization can be stated as minimizing com-
putationally expensive black-box function f over A. As discussed earlier, these hyper-
parameters cannot be optimized using standard means, as there is no knowledge of f,
and therefore exhaustive search methods such as grid search partition A into a discrete
subset G C /A and optimize f over G, which takes a lot of time as many hyperparameter
configurations have to be tested.

A more recent class of hyperparameter optimization methods follows the SMBO
framework, where on known hyperparameter responses of f on a discrete subset G,
a surrogate model W()\) is learned to most accurately predict f. Once this is accom-
plished, ¥ is then used to predict promising hyperparameter configurations to choose
next, while maintaining a tradeoff between exploration and exploitation. Exploration
drives the choice of choosing distant hyperparameter configurations, where the surro-
gate model ¥ is very uncertain. Exploitation chooses hyperparameters in well-known
regions of f, which might find local but not necessarily global optima. Therefore, a
decent tradeoff between exploration and exploitation is desired.

As [2] proposed, this procedure is not limited to only one data set and can therefore
be expanded in a way that ¥ learns the response for given hyperparameters across many
datasets D € {Dy, ..., D,,} where the response surface has already been observed, to
then use the gained knowledge to optimize hyperparameters for a new data set D"%. In
order to learn such a surrogate, we now denote the input of ¥ and f by «, which also
contains dataset information.

x=(\d,m), 3)
where d is a binary dataset indicator and for a given data set D; defined as
d(DJ) = (dh ...7dm) d; = (5(2 = j) s (@]

for ¢ being the indicator function. By m or more formally m(D;), we denote descrip-
tive features for data set D;. They are usually called meta features and can be simple
statistics, such as number of attributes, number of instances [2] [21] or more complex
features such as the classification accuracy of a decision tree or a linear SVM [15].
Finally, an observation history H is built to contain all hyperparameter responses for
A € G for all data sets D where hyperparameter optimization has already been accom-
plished.

The resulting procedure can be seen in Algorithm [T} At the beginning of one trial,
we fit the surrogate model ¥ to the given observation history. Then we query an ac-
quisition and choose its maximum to be the next hyperparameter configuration to test.



The most widely used acquisition function is the expected improvement (EI) [9]], which
given a currently best hyperparameter configuration 2:°**' is defined as

FI(z):= / Oof.p(uw,xb“‘)df : 6)
0

Afterwards, f is evaluated for the proposed hyperparameter configuration and the tuple
(z, f(x)) is then added into the observation history H.

Algorithm 1 Sequential Model-based Optimization Across Data Sets

Input: Hyperparameter space A, observation history H, target data set D"", number of itera-
tions 7', acquisition function a, surrogate model ¥.
Output: Best hyperparameter configuration z**** for D"
I: fort =1toT do
Fit ¥ to H
2" = arg max a (z,¥(x))
x

2

3

4:  Evaluate f (z™")

5 if f(2™%) > f(z™) then
6.

7

8:

mbesl — phev

’}_l — ’}_L U (xl'lew7 f (xnew))
return z°

3.2 Requirements for a Surrogate Model

We have identified three main ingredients for a surrogate model to be able to accurately
predict hyperparameter responses across data sets.

Nonlinearity. Usually, the hyperparameter response f is highly nonlinear and therefore
dictates a surrogate model to also adapt this property. We will see later in our exper-
iments, that even nonlinear models can fail to reproduce the response surface, if the
employed basis functions are not well chosen and thus the model does not offer enough
complexity.

Prediction Uncertainty. If we fully trust the surrogate model ¥ in its predictions, i.e.
use the identity as acquisition function and therefore always query the hyperparameter
configuration with the best predicted performance, we are doomed to fail because only
exploitation of the model is done, meaning that we always stay in a region of the hy-
perparameter space /A where we have started. This is due to the fact that the surrogate
model is learned on a few observations of f and therefore will not accurately predict ev-
ery hyperparameter performance. To circumvene this issue, acquisition functions such
as the EI are employed, that try to balance exploration and exploitation. In order for EI
to work, the surrogate model needs a predictive posterior, i.e. a probability distribution
on ¥ (x) that can be queried for how uncertain the prediction is, thus forming the second
key ingredient for a decent surrogate model.



Shared and Data Set Specific Parameters. To successfully learn surrogate model
across different problem aspects (i.e. data sets), it should be able to distinguish between
these to learn specific data set characteristics. A natural way is to add binary dataset
indicators as it was done above. However, to be able to learn more than only a data set
bias with these features, we aim to learn factorization models that can also model the
interactions of hyperparameters with datasets, hyperparameters with model choices and
so on. In this way, we automatically learn latent characteristics of a data set.

Another way to let the surrogate learn across problems is to add meta features that
describe the problems, where for data sets, many meta features have already been pro-
posed. If we think one step further and want to generalize over other problem aspects
such as preprocessing, choice of model, etc. we have to come up with meta features
describing these problem aspects, which does not seem reasonable to us anymore.

3.3 Proposed Models

Factorization Machines. The first surrogate model we propose is a factorization ma-
chine which was introduced in [[16]. It works as a generalization of factorization models
and can mimic all different kind of models if the features are preprocessed in a certain
way. To every given feature, i.e. in our case hyperparameters and binary data set indi-
cators, the model associates a vector of K & N latent features. The final prediction is
then given through

n 1 n n
¥(x) =wo + Zwixi t3 Z Z (vi,vj)imj (6)
i=1

i=1 j=i+1

The model is also sometimes called a factorized polynomial regressor, as in its essence
it is a polynomial regression of degree two, if one sets w; ; := (v;, v;), though by fac-
torizing this weight the model can be fitted more effectively in sparse settings as the
parameters have more instances to learn from. Moreover, by applying a factorization
machine, we are also able to learn interactions of data sets and hyperparameters. Ulti-
matively, we are even able to use continuous features, such as meta features, which a
standard matrix factorization model would not allow us to do.

Multilayer Perceptron. The next model we propose to use as a surrogate is the multi-
layer perceptron, which may be more commonly named as feedforward neural network.
A multilayer perceptron consists of L many layers, where each layer comprises /N many
nodes and is fully connected to the next layer, forming the structure of a directed acyclic
graph. At the beginning, z = x° is used as input for the first layer. The k-th output of a
layer [ is then defined as

n

! 1-1(, 1-1 1-1,_1—1 l

TR =0 (wo,k +Zwi7k x; )za(sk) , @)
i=1

thus acts as input for the subsequent layer, where o' ! is a sigmoid function, in our case
we used the hyperbolic tangent, and w are the weights, i.e. parameters of the model. In



this way, the information is propagated forward until predictions are made in the final
layer. As our task is regression, the final prediction will be one-dimensional and o~ ~!
is defined as the identity function

W(z) =wh '+ Zwﬁ*%*l ) (8)
i=1

Let us have a closer look at what the model does with binary data set indicators. In
the input layer, the multilayer perceptron learns exactly /N many weights per each data
set, which act as a data set bias, and therefore can be used by the model to generalize
across data sets. From the second layer onwards, the model acts independently from
the data set as all features then are fitted globally. Nevertheless, interactions can still
implicitly be modeled throughout the learning process of the network. The question to
answer is whether an explicit modelling of these interactions such as in a factorization
machine is better than an implicit one.

Factorized Multilayer Perceptron. Finally, the third surrogate model proposed by
us is a mixture of both previous models and is therefore called a factorized multilayer
perceptron. Closely related to a multilayer perceptron, it also consists of L many layers,
where each layer comprises N many nodes, also the final prediction is the same as given
in Equation 8] The only difference is that here we explicitly model feature interactions
in the input layer, by using the prediction of a factorization machine instead of a linear
model. Thus, the k-th output of the first layer is defined as

n 1 n n
T = a(s,lc) = o(wo)k + Zwi,kxi + 5 Z Z (Vi ks vj7k>xixj) , 9)
i=1

i=1 j=i+1

where v; 1, € R are the latent characteristics of feature i for the output k. Note that
we only do this in the first layer and therefore dropped the layer dependencies to avoid
unnecessary clutter.

In this way, we explicitly model the feature interactions of a factorization machine
into the first layer of a multilayer perceptron, as the binary data set indicators are nat-
urally only given in the input layer. This model can be learned straightforward using
backpropagation [17]], the only difference is that we have to consider the update for the
latent feature vectors as well. The resuling procedure can be viewed in Algorithm
where the updates are denoted for a stochastic gradient descent approach. We dropped
the usual momentum term to avoid clutter, the implementation of such a term is straight-
forward.

3.4 Estimating Prediction Uncertainty

The proposed surrogate models are still lacking the ability to predict under uncertainty,
which is a key ingredient for running SMBO with a decent tradeoff between exploration
and exploitation. SMAC uses a random forest, i.e. a bagged ensemble of decision trees,
and is thus able to compute a mean and a standard deviation by assuming that the



Algorithm 2 SGD-Backpropagation for Factorized Multilayer Perceptron
Input: Data Set D, Loss function £, step length 7 > 0.

1: repeat

2:  Draw (z,y) € D

3:  Predict §(x)

4:  Compute §}, = % . ;ﬁ for all layers [ and nodes k
5:  Update w!;, = w!, — nélz;

6:  Precompute ¥ =31 vz

k k ! k k.2
Update v;'; = vi'; — né(zipy — vi;T7)

7: until Convergence

prediction of the ensemble is Gaussian distributed. Alternatively, SCoT uses a ranking
approach and learns a Gaussian process on the ranked output, thus obtaining prediction
uncertainty through the Gaussian process.

By treating the abovely proposed surrogate models in a Bayesian setting as it is
described in [13]], it is possible to deduce prediction uncertainty using a Taylor approx-
imation of the objective function. Let us denote by w a vector of all parameters of ¥,
including biases, weights and possibly latent characteristics. Assuming a Gaussian prior
with covariance a~! of the form

pw) =N(w|0,a7'T) , (10)

the posterior distribution of the parameters w given the data D, « and data set noise

o? can be estimated by using a second-order Taylor decomposition on the objective

function. The resulting parameter posterior is approximated as
pw|D,a,0%) = N(w|w*, A7), (11

where A = SH + al, and H is the Hessian matrix of the loss on the data set. The
densitiy of the predictive posterior can then be written as

p(y|x, D, o, 0?) = /J\/(y | (x,w), o )N (w |w*, A~ dw . (12)

As [13]) argues, this integral is not feasible to compute because of the nonlinearity of ¥,
thus a first order approximation is done around w* yields

U(z,w) =~ ¥(x,w*)+g' (w—w*) where g= Vol (2, 0)| e - (13)
Finally, the predictive posterior can be written as Gaussian
plyle,D,a,0%) = N(y|¥(z,w"),0% + 9" A™"g) . (14)

In conclusion, to predict the uncertainty of ¥ for an instance =, we need to estimate the
Hessian of the loss of ¥ on D, and a gradient g depending on z. The latter is easy at
it only involves a computation of the gradient, which is for a multilayer perceptron a
forward and a backward pass through the network.



Fig. 1. Predictive Posterior of a multilayer perceptron learned on (x1,y1) = (0,1) and
(z2,y2) = (m,—1). The red line shows the mean, the grey line shows one standard deviation
(Best viewed in color)

To compute the inverse Hessian in an analytic fashion is usually not feasible as com-
puting one entry of the Hessian involves a pass over the whole data and then inverting
the resulting matrix has an effort that is cubical in the number of parameters, i.e. the
dimensionality of w. Out of this reason, we seek to approximate the inverse of the Hes-
sian directly by using a sum of outer products as it is exposed in [4]. As the target loss
is least squares, the Hessian can be written as

H= Y V¥(z,w)V¥(z,w)" + Y  (y—¥(z,w)VV¥(z,w) . (5)

(w,y)€D (w,y)€D

As [4]) outlines, for a carefully learned model the second sum can be neglected as the
quantity (y—¥(x,w)) is close to zero. Thus, H can be approximated using only the first
term which is a sum of outer products. The inverse of H can directly be computed in
an iterative fashion over the data set using the Sherman-Woodbury formula and starting
with an initialization of H~! = a~'I. In this way, we we effectively compute the
inverse of H 4 «f, which is exactly the matrix we seeked to invert. A one dimensional
example can be seen in Figure[I] where a multilayer perceptron is learned on two data
points.

As an alternative approach, we simply compute an ensemble of surrogates and pre-
dict the uncertainty using the estimated mean and standard deviation of all the predic-
tions, as it is also done by SMAC. The resulting variance then stems from differently
learned models, which in the case of SMAC results from bagging. As the most simple
approach, we propose to learn an average ensemble, where the resulting variance stems
only from different initializations of the surrogate model, which is reasonable if the
whole optimization problem is not convex and therefore yields different solutions.
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4 Experiments

To assess the performance of our proposed surrogate models we will conduct three
different experiments on two meta data sets that we have created on our own.

4.1 Meta Data Set Creation

For 25 randomly chosen classification data sets of the UCI repositoryﬂ we merged ex-
isting splits into one data set, then shuffled the data set and created one split where
80% of the data was used for training, and the remaining 20% for testing. To cre-
ate the first data set, we learned AdaBoostE] by employing decision products as weak
learners of the ensemble. This involves two hyperparameters, the number of itera-
tions I and the number of product terms M. For all 25 classification datasets, the
resulting test accuracy was recorded when learning AdaBoost with hyperparameters
I €{2,5,10,20,50,100, 200,500, 1000, 2000, 5000, 10000} and M € {2,3,4,5,7,
10, 15, 20, 30} which yields 108 meta instances per data set.

The second meta data set was created by learning an SV with four involved hy-
perparameters, namely the choice of kernel between linear, polynomial and Gaussian,
the tradeoff parameter C, the degree of the polynomial d and the width ~y of the Gaussian
kernel. If a hyperparameter is not involved, for example the polynomial degree for the
SVM with Gaussian Kernel, we set it to zero in the meta instances. Again, the test accu-
racy was precomputed on a grid consisting of hyperparameters C € {27°,...,2%},d €
{2,...,10} and v € {0.0001, 0.001, 0.01,0.05,0.1,0.5, 1, 2,5, 10, 20, 50, 100, 1000},
which results in a meta dataset of 288 instances per data set. By including also the
choice of kernel for the SVM, this meta data set can already be viewed as cross-model,
since we try to learn not only the hyperparameters but also a model choice.

As they are an indispensable part of the competing methods, we also added the
meta features used by [2] and [21]] to our meta data sets. These encompass the number
of classes c, the logarithm of the number of predictors log(p) and finally the logarithm
of the quotient of dataset instances and number of predictors log(|D|/p). Finally, we
scaled the meta features to have values in [0, 1].

Table 1. Confidence intervals of the resulting RMSE of experiment 1 for all models when recon-
structing the response surface

\ |RF |SVR |FM |MLP |FMLP \
‘SVM ‘0.0997i0.028‘0.1110i0.020‘0.1041i0.029‘0.0596i0.013‘0.0550i0.016‘

AdaBoost 0.0462+0.012]0.0840+0.009{0.0579+0.015|0.0380£0.008|0.0377 £0.009

! http://archive.ics.uci.edu/ml/index.html
2 http://www.multiboost.org
3 http://svmlight.joachims.org



4.2 Experiment 1: Reconstruction of the Response Surface

As a first experiment, we seek to learn models to reconstruct the hyperparameter re-
sponse surface in order to determine their usefulness for hyperparameter optimization
in the sequential model-based optimization framework. The evaluation protocol is de-
signed in a leave-one-out fashion, where we learn a surrogate model on 24 response
surfaces plus a few observations of hyperparameter responses of the new dataset to then
predict the full response surface. For the test data, we took 4% of the responses as train-
ing data, 10% as validation data for hyperparameter optimization of the surrogate model
and used the remaining 86% as test data.

As surrogate models, we used a random forest (RF), a support vector regression
(SVR), a factorization machine (FM), a multilayer perceptron (MLP) and a factorized
multilayer perceptron (FMLP). For the RF, we used the implementation in MLTKE], for
the support vector regression we used the implementation by Joachims E] All remaining
models were implemented in Java by ourselves and optimized for minimal root mean
squared error (RMSE). Hyperparameters of all models have been optimized using grid
search, for more detail on the grids, we refer to our supplementary webpage [18]]. The
resulting 95% confidence intervals of the leave-one-out cross validation are reported in
Table([T] Clearly, both neural network models outperform the other models by a consid-
erable margin, where the FMLP tends to achieve the best performance, although the lift
to a normal MLP is marginal and not statistically significant. It is observable that results
on AdaBoost are much better, therefore indicating that the hyperparameter optimization
problem for this specific model is easier than for an SVM. We acknowledge that also
the lift of our models compared to the RF is not statistically significant.

Unexpectedly, a factorization machine fails to reconstruct the response surface as
its RMSE is clearly worse than of the MLP, for instance. This stems from the fact that
its expressivity in this setting is rather limited as a standalone model, which can be
demonstrated by a small example. If we consider an instance out of the SVM meta data
set with RBF kernel, then, leaving out the meta features, the prediction can be shown to
have the form:

Q/(x) = Wo +wCC+w'y’Y+wC,7 Cr, (16)

which has the geometrical form of a hyperbolic paraboloid. This clearly fails to repro-
duce any complex response surface and therefore a plain Factorization Machine is not
a good candidate for a surrogate model.

4.3 Experiment 2: Uncertainty Estimation in SMBO

In this experiment we compare the a multilayer perceptron in two different scenarios.
Before we proceed, we first introduce the evaluation metrics that we applied in the
SMBO setting.

Evaluation Metrics for SMBO. We use two different evaluation metrics, at first the
average rank of the individual models, where the second metric is the average hyperpa-
rameter rank.

* http://www.cs.cornell.edu/ yinlou/projects/mltk/
3 http://svmlight joachims.org/
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Average Rank. The average rank among different tuning strategies ranks all tuning
strategies by the best hyperparameter configuration they have found so far, where ties
are solved by granting the average rank. If we for example have four different tuning
strategies where one obtains an accuracy of 0.9, two others obtain 0.8 and the third
obtains an accuracy of 0.7, we associate the ranks 1, 2.5, 2.5, 4.

Average Hyperparameter Rank. By average hyperparameter rank we do not compare
between methods but between hyperparameters found. For a fixed data set D, the hy-
perparameter responses are ranked according to their performance, then the average
hyperparameter rank is simply the average over all folds.

AdaBoost SVM
60 MLPH=MLPE MLPH=MLPE

i
3
8

&

@
&

Average Hypevparamete; Rank
5

Average Hyperparameter Rank

0 10 50 0 10

20 30 20 30
Number of Trials Number of Trials
Fig.2. Development of the average hyperparameter rank with increasing numbers of trials.
Clearly, the convergence of the ensemble MLP is much faster than using the inverse Hessian
(Best viewed in color)

Experiment Setup and Results. We evaluate at first the MLP when computing predic-
tive uncertainty by means of an inverse Hessian matrix (MLPH) as proposed in section
[3.4] opposed to the approach where the uncertainty is assessed by using an average
ensemble (MLPE). The development of the average hyperparameter rank for both the
SVM and the AdaBoost data set is plotted in Figure|2| where results are averaged over
10 runs for both methods. As the figure indicates, the convergence of MLPE is much
faster, which is due to several reasons. At first, having an ensemble yields a better
approximation of the response surface itself. Secondly, the predicted uncertainty does
not seem to help in exploring the hyperparameter space, which then results in an overall
small convergence. This is due to the fact, that the inverse Hessian is only approximated
in many ways, if we consider Equation [I3] which is already a Tailor approximation, the
second term was neglected for a carefully trained model. By adding the new target data
set to our overall loss, this assumption is likely not valid anymore as the surrogate has
almost no knowledge of the new data set and therefore cannot be perfectly trained for
it. Moreover, if we consider Figure|l] it still shows quite a bit uncertainty around points
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which have already been evaluated which might lead to exploitation. The uncertainty
only decreases if more points in this region are queried, a luxury that we are not per-
mitted in the SMBO scenario.

Consequently, as it also takes more time to compute the inverse Hessian than learn-
ing an ensemble model, we propose to follow the latter strategy. This is also done in the
next experiment, where MLP and FMLP are used in an ensemble fashion.

4.4 Experiment 3: Sequential Model Based Optimization

As a final experiment, we test our surrogate models, the MLP and FMLP in the SMBO
setting, where we again perform a leave-one-out cross validation over data sets. Hyper-
parameters of baseline models have been specifically optimized for the average hyper-
parameter rank, for the models proposed by us we used the optimal hyperparameters
of the first experiment. To consider initialization variance, all results are averaged over
10 runs, except for the random search where 1000 runs were executed. We will briefly
describe the competing methods in the following.

Tuning Strategies.

Random Search. This is a tuning strategy that neither uses a surrogate model nor uses
an acquisition function. It was first proposed in [3]], and has proven to work well in
scenarios of low effective dimensionality.

Independent Gaussian Process (I-GP). This tuning stategy uses a Gaussian Process
with a Gaussian kernel as surrogate model. It does not employ any information of hy-
perparameter responses on other datasets, therefore does not learn across data sets.

Sequential Model-based Algorithm Configuration++ (SMAC++). SMAC [8] uses a
random forest as surrogate model, we denote by SMAC++ a random forest that also
incorporates meta features and therefore is able to take hyperparameter performance of
other datasets into account.

Surrogate-based Collaborative Tuning (SCoT). This is the tuning strategy proposed
by [2]. Its surrogate model is based on a two stage approach, as it first learns a ranking
using SVMRANK with an RBF Kernel. Then, a Gaussian Process is learned on the output
of the ranking. As indicated by [21]], learning an RBF Kernel takes too much time, we
followed their suggestion and learned a linear kernel instead.

Gaussian Process with MKL (MKL-GP). As proposed by [21]], this tuning strategy is
based on a Gaussian Process as surrogate model where the kernel is a mixture of an SE-
ARD Kernel combined with a kernel modelling the distances between data sets, which
is estimated based on the meta features.

Multilayer Perceptron (MLP). Our tuning strategy based on a multilayer perceptron that
associates weights to binary data set indicators. We learn an average-ensemble of 100
models to assess uncertainty in the prediction. The weights of the network are initialized
using the Nguyen-Widrow [|14] initialization for faster convergence of the model.
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Factorized Multilayer Perceptron (FMLP). The final tuning strategy that we propose.
It is similar to the multilayer perceptron, but uses an additional factorization part in
the first layer to directly model all interactions of hyperparameters, data sets and meta
features. As for the MLP, we again learn an ensemble of 100 models to predict uncer-
tainties, the network weights are being initialized as for the MLP, the latent factors are
initialized using a Gaussian prior.

Optimal. This is an artificial surrogate model that always predicts the best hyperparam-

eter configurations and is plotted for orientation purposes.

AdaBoost SVM
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Random

SMAC++

SNIIAC++
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I-GP = MLP
SMAC++==FMLP

Optimal

= SCoT

Optimal

Optimal

60
Number of Trials

9%

50 100 150
Number of Trials

Fig. 3. Development of the average rank with increasing numbers of trials (Best viewed in color
or online [18]))

Results. Figure 8| shows the development of the average rank with increasing number
of trials. For both meta data sets the first ten trials of SMBO encompass some noise
as basically all competing methods start out equally good (or bad). Afterwards, we see
that the FMLP performs best in the arguably most interesting region, where there is a
proper tradeoff between the optimal hyperparameter found so far and the overall used
percentage of the grid, as in the beginning, there is a lot of noise involved and in the
end the improvement in hyperparameter performance degrades. Note that the MLP also
is very competitive and therefore empirically already a decent tuning strategy.

Figure [ demonstrates the development of the average hyperparameter rank. This
chart gives an impression of how fast the actual performance of proposed hyperpa-
rameter configurations converges to the optimal configuration on the grid. Again, we
observe that the FMLP works best for both the AdaBoost and the SVM data set, which
none of the baselines accomplish, as for example SCoT only works well on the SVM
data set. We acknowledge the good results of an independent Gaussian Process on the
AdaBoost data, which degrades on the SVM data set. This may be due to the higher
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complexity of the SVM data as it not only contains different hyperparameters but also
model choices. On AdaBoost, the MKL-GP also performs really well, but does not
show the same performance when applied to the SVM data set.

AdaBoost SVM

Random -~ MKL-GP 100- Random - MKL-GP
I-GP = MLP I-GP = MLP
SMAC++==FMLP SMAC++==FMLP

= SCoT = SCoT

IS
S

@
S

MKL-GP
50-

SMAC++

Average Hyperparameter Rank
59
S

Average Hyperparameter Rank

o
1)

SCoT

) 50 0 10 40 50

20 30 20 30
Number of Trials Number of Trials

Fig. 4. Development of the average hyperparameter rank with increasing numbers of trials (Best
viewed in color or online [[18]])

5 Conclusions

We proposed to use multilayer perceptrons as surrogate model and improved them by
using a factorization approach in the first layer. Our experimental results on two public
meta data sets show that the FMLP outperforms current state of the art surrogate models
in hyperparameter optimization using the SMBO framework. Moreover, we evaluated
two different strategies of assessing prediction uncertainty and showed empirically, that
the simpler and faster strategy works better. For future work, we want to extend our
meta data sets to a cross-model problem by using a plethora of base models and then
try to learn a common latent feature space for datasets and models. We argue that this
is the next step to be made in hyperparameter optimization.
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