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Abstract—In the early observation period of a time series,
there might be only a few historic observations available to
learn a model. However, in cases where an existing prior set of
datasets is available, Meta learning methods can be applicable.
In this paper, we devise a Meta learning method that exploits
samples from additional datasets and learns to augment time
series through adversarial learning as an auxiliary task for the
target dataset. Our model (FEML), is equipped with a shared
Convolutional backbone that learns features for varying length
inputs from different datasets and has dataset specific heads
to forecast for different output lengths. We show that FEML
can meta learn across datasets and by additionally learning on
adversarial generated samples as auxiliary samples for the target
dataset, it can improve the forecasting performance compared to
single task learning, and various solutions adapted from Joint
learning, Multi-task learning and classic forecasting baselines.

Index Terms—Early Time series forecasting, Meta Learning

I. INTRODUCTION

Time series forecasting is an active area of research with
wide applications in multiple domains such as Energy resource
management [1], Financial modeling [2], and Environment
planning [3] to name a few. For many of these applications to
realize, a practical assumption is the availability of Big data
[4], [5], given most modern research methods rely on Deep
learning from vast amounts of data. This motivates the research
question of learning accurate forecasting methods from only
limited observations. In practice, limited observations could be
a result of not observing the time series for a long duration,
for example if the frequency of observation is yearly, or due
to limited number of data generating processes, for example,
availability of only a few sensors. Arguably one of the most
impactful applications recently has been forecasting COVID-
19 number of cases and deaths where only limited historic
observations were available initially. Herein, Early Time Series
Forecasting (eTSF), the task of forecasting the time series
given only limited historic observations, can be modeled. We
further motivate the problem setting with Fig. 1.

*Equal Contribution

Fig. 1: Motivation for modeling eTSF as a meta-learning
problem. The target eTSF dataset DN (blue) and the auxiliary
datasets {D1, . . . , DN−1} (red). A meta-learning model could
utilize the general representation learned across the auxiliary
datasets to improve the prediction accuracy on the target
dataset where just a few time steps are observed. The dotted
line indicates the forecast horizon hN for target dataset DN .

However, there is a dearth of research in the direction of
general eTSF methods, unlike its classification counterpart
of Early time series classification (eTSC) [6] [7]. the early
hazard warning forecasting [8], or the early manufacturing
data forecasting [9]. Secondly, in comparison to eTSC, eTSF
is a more challenging task as it concerns forecasting the full
trajectory of the time series from the very limited available
data in contrast to solving for in-sample data in classification.

We alleviate the first complication by providing a bench-
mark for early time series forecasting with 32 datasets col-
lected from the Monash Forecasting Repository [10] covering
various domains. The benchmark could motivate the research
community for developing domain-independent models for the
task of early forecasting. The second complication translates
into an interesting research question, and could be solved
by considering eTSF as a direct realization of time series
compatible methods from the research areas of Meta learning
[4], [11] and Transfer learning [12], [13].



To the best of our knowledge, meta-learning for the task of
eTSF as shown in Figure 1, is yet to be explored. However,
the use of meta-learning methods for general time series
forecasting have been explored previously in [4], [12]–[14].
The pioneering works [12], [13] showcased the applicabil-
ity of well-established forecasting methods to the Zero-shot
forecasting problem. The work [4] learned a joint forecasting
model across observations from multiple datasets by employ-
ing permutation invariant Deep Set blocks [15] that allow
learning with heterogeneous multivariate channels. Among the
drawbacks concerning the prior approaches are learning from
only a single source dataset [12], [13], learning on a fixed
sized input and forecast horizon fixed across datasets [4], [12].
Another limiting factor is the lack of gradient based adaptation
[4], [12], [13] in the scenario of having a larger number of
samples (as related time series), a possibility unconstrained
by an early time period.

A significant stream of work is dedicated to data augmenta-
tion with the similar goal of improving modeling performance
in scarce data scenarios. Traditional approaches that inject
Gaussian noise or slice windows can lead to a generation
of redundant sampling and require extensive hyperparameter
tuning for effective coupling with a downstream learning
model [16]. On the other hand, deep generative learning
method [17], can augment data in either imbalanced datasets
or be applied for anonymization but require substantial data
hindering their application for solving the eTSF task.

In order to solve these challenges, we propose a novel
model for Forecasting Early with Meta Learning or FEML
(pronounced “fee·mayl”) composed of a convolutional encoder
and a stack of linear layer decoders. The convolutional layers
learn a joint embedding of input time series across datasets
of varying lengths, and the decoding layers enable dataset-
specific direct forecasting of the forecast horizons. These
Linear layers are further guided by findings in recent studies
[18] that credit the linear layers extrapolating for multiple
outputs as the main building block of deep forecasting archi-
tectures [19]–[23]. We further adapt a well-established meta-
learning algorithm Reptile [24] to serialized learning across
time series datasets with our multi-head forecasting model
FEML. Moreover, we design a novel multi-task loss that
enables additional learning on adversarially generated samples
through the Fast Gradient Sign Method [25] for the target
dataset. This further improves the forecasting performance and
the applicability of this augmentation scheme is unhindered by
lack of samples and generation is guided by tightly coupled
learning on the multi-task loss.

We summarize the contributions as follows:
1) To the best of our knowledge, we are the first to address

the problem of Early time series forecasting with a
principled meta learning solution.

2) We design our method to learn across multiple time
series datasets, with varying input and forecast lengths.

3) We provide the first useful benchmark for Early time
series forecasting across 32 datasets from the Monash
Forecasting Repository [10].

4) We investigate the effect of data augmentation through
adversarial learning.

5) We benchmark our method against Statistical base-
lines, Stand-alone State-of-the-art forecasting models
and other meta-learning methods like Joint learning and
Multi-task learning.

II. RELATED WORKS

Statistical methods for time series forecasting positions
themselves as strong baselines while forecasting within the
low data regime. Methods like ARIMA [10] and ETS [10],
[26] are carefully curated techniques for time series forecasting
and have been the default method for explainable forecast from
previous decades. ARIMA models are simple regression mod-
els where previous lagged observations are used to generate
forecast. Simple exponential Smoothing (ETS) computes the
forecasts as exponentially decaying weighted averages of past
time series observations. However, until the introduction of
TBATS [27], none of the statistical baselines were equipped to
handle multiple seasonality, high-frequency seasonality, non-
integer seasonality and dual calendar effects. TBATS fuses
together Box-Cox transformations [28] and Fourier representa-
tions along with ARMA error corrections. Since the statistical
models leverage only the last few data instances for forecasting
the future time steps, they should excel in theory for the task
of eTSF. Nevertheless, such a comparison is missing in prior
works on meta-learning for forecasting [4], [5], [29].

Modern deep learning architectures based on CNN [30],
RNN [31], [32] and Transformer [1], [20] have also been
explored for forecasting. Recently, however, the work from
[18] has showcased that for most time series forecasting tasks,
even linear representations can suffice. For the task of long
horizon forecasting, linear methods like DLinear and NLinear
[18] were found to outperform counterpart non-linear deep
architectures. In essence, the NLinear model is a simple feed-
forward network that is meticulously designed to reduce the
domain shift while working with long horizon forecasting.
Although long horizon forecasting is an interesting topic, it is
yet unclear if deep learning methods for time series forecasting
would outperform the statistical counterparts for eTSF.

Transferring knowledge from one task to improve perfor-
mance in a test dataset has been extensively researched within
the deep learning community. In Computer vision, models
are consistently trained on a large corpus of ImageNet [33]
as a pre-training step before fine-tuning the model for the
target task. Within the time series forecasting community,
transfer learning was used in [34] to improve the electricity
demand forecast by transferring knowledge from a source
location to that of a target location. The authors achieve the
objective by decomposing the time series and transferring
knowledge from the decomposed components. In [12], the
authors propose a zero-shot training strategy that learns on
a source dataset and predicts on a target dataset without
learning on the target dataset. The authors interpret the zero-
shot results as an evidence supporting the use of meta learning
for time series forecasting. Even though, the aforementioned



studies successfully transfer knowledge across datasets, the
transfer of knowledge is limited from one dataset. The work
from [5] uses a Recurrent neural network equipped with
context based Attention for learning meta representations by
learning to forecast time series across datasets. In [4] a meta
learning model that is able to deal with the problem of having
heterogeneous channels was proposed. The method encodes
the time series channels with a recurrent network based
encoder and then uses Deep Sets [15] for learning invariant
representations across the channel space, effectively providing
forecasts for multivariate time series with varying number
of channels. Another recent approach that aims to transfer
representations [29] shares attention representations between a
source dataset with many samples and target dataset with fewer
samples. Through sharing the attention representations and
learning a discriminator that distinguishes samples between
the two datasets, the forecasting performance was shown to
be improved for the target dataset. In [35] the task of domain
adaptation for time series forecasting was explored with aug-
menting the target dataset with similar samples from various
other time series datasets based on computing the DTW based
distances [36]. Among the gradient based approaches to meta-
learning for time series, [37] focuses on learning multi-modal
meta representations. The intuition being that a time series
can cover multiple modes and thought of as collection of
multiple intra-time related tasks to be modeled. Another recent
approach in this direction is also noted in [38].

We delineate from prior works as firstly, we focus on Early
time series forecasting where, to the best of our knowledge,
there exists no work and secondly, our work eliminates the
restriction set by previous meta-learning techniques to have a
fixed forecast horizon and input length across datasets [4], [5],
[12], [29], [35]. By treating these characteristics as a function
of the dataset, we allow for a principled meta-learning solution
across datasets. Prior work [12], [29], [35] is also limited to
learning only from a single auxiliary dataset.

III. PROBLEM FORMULATION

A time series dataset D consists of tuple of time series
D := {(X,Y )|(X,Y ) ∼ ρ} with X ∈ Rδ , Y ∈ Rh, are
the predictors and forecasts with δ being observation time and
h being forecast horizon, drawn from a random distribution
ρ. We denote the domain of the dataset as Ω. We consider a
meta dataset D consists of N many datasets with Di ∈ D with
domain Ωi drawn from distribution ρi, with δi and hi as the
observation time range and forecast horizon. For notational
convenience, we denote the number of samples per dataset
as Mi. Further, we denote DN as the support for the target
dataset with δN ≪ δi, i < N . We define the loss function
ℓ : RhN × RhN → R. Our objective then is to find a meta-
model m : Ω1 × ...,×ΩN−1 × RδN → RhN , such that the
expected loss on (X,Y ) ∼ ρN , observed after the occurrence
of DN in chronological order, is minimized:

min E
(X,Y )∈ρN

ℓ(Y,m(X,D1, ..., DN ))

Fig. 2: FEML learns over the samples from the auxiliary
datasets {D1, . . . , DN−1} (represented in red) during the inner
iteration and adapts the parameters to the target dataset DN

(represented in blue) in the outer loop. The FEML model
consists of shared Conv1D(Φ) parameters and dataset specific
NLinear(θi) for i ∈ {1, . . . , N}. Here, δ, h,M indicate the
observed range, the forecast horizon and number of tuples in
a time series dataset D respectively.

IV. METHOD

Our forecasting method, FEML learns input length invariant
convolutional features for accurate forecasting of multiple
datasets. The inputs to FEML are fed through a series of
one dimensional convolution layers and non-linear activations.
These convolutional features can learn rich locality informa-
tion. Given that the convolutional features are learned by
sliding the 1D kernels over the input window, the convolutional
encoding can process input of different lengths from different
datasets, expressed as:

Zi = Conv1D(Xi; Φ) (1)

The Encoder Conv1D(.; Φ) : R1×δi → Rd×δi is composed of
L many layers and its learnable parameters are jointly denoted
as Φ. Passing the input time series from the ith dataset, we
get the embedding: Zi ∈ Rd×δi . Where d represents the
dimensionality of the convolutional filters.

Importantly, these convolutional features also constitute the
shared embedding parameters in FEML ensuring that multiple
datasets are embedded in a joint feature space. This distinction
is important, as later we will see that we perform meta-learning
updates on the shared parameters of the network. Furthermore,
the use of shared parameters is also guided by a key-insight in
Multi-task learning literature which points to the fact that for
optimal Multi-task learning a combination of shared, and task-
specific parameters is desired. Therefore, we design multiple
output heads composed of task-specific Linear layers that can
forecast for each dataset respectively. These layers take the
Convolutional encoding Zi from the Encoder, and then learn



Algorithm 1 Learning for FEML

Require: Time series datasets {D1, ..., DN}, learning rates(
µin, µout, µad, ϵ, w

)
, Φ, {θi | i = 1, ..., N}

1: Initialize Φ
2: Initialize {θi | i = 1, ..., N − 1}
3: while not converged do
4: Draw i ∼ Uniform({1, ..., N − 1})
5: Φin ← Φ
6: θini ← θi
7: for (Xi, Yi) ∈ Di do
8: Compute Ŷi ▷ using Eq. 1,2
9: Update Φin, θini ▷ using Eq. 5

10: end for
11: Update meta parameters Φ, θi ▷ using Eq. 6
12: Φad ← Φ
13: Initialize θN
14: for (XN , YN ) ∈ DN do
15: Generate X ′

N ▷ using Eq. 3
16: Compute ŶN , Ŷ ′

N for XN , X ′
N ▷ using Eq. 1,2

17: Compute ℓN ▷ using Eq. 4
18: Update Φad, θN ▷ using Eq. 7
19: end for
20: end while
21: Output Φad, θN

to extrapolate the forecast directly for all forecast outputs.
Our choice for stacking task-specific layers besides having
a combination of shared and non-shared parameters among
tasks is also based on recent findings from [18] where it was
posited that direct forecasting with a normalized Linear layer
(NLinear), in recent forecasting architectures was key to their
success. The output from the ith head can be expressed as:

Ŷi = NLineari(Zi; θi) (2)

The NLineari(.; θi) : Rd×δi → Rhi where layer parameters
θi denote the ith task specific parameters for forecasting a
fixed horizon per dataset specified apriori. To further elaborate
this, although the Conv1D(.; Φ) layers can process inputs
of various lengths from different datasets and learn shared
parameters for those, the NLineari(.; θi) layer takes a flattened
fixed length vector and outputs for a fixed sized horizon.
Therefore, the NLineari(.; θi) layer is defined for each dataset
separately, to forecast for the corresponding forecast horizons.
This construction resembles architectures with multiple heads
to solve multi-task problems in computer vision tasks [39]–
[41]. We can also contrast this construction to a single head
decoding model as presented in the ablation.

A. Adversarial learning with FEML

Adversarial samples are samples generated from a similar
input data distribution that could confuse the model to output
wrong predictions. We follow a well-established approach,
Fast Gradient Sign Method (FGSM) [25] to generate adversar-
ial samples. Given input (XN , YN ) ∈ DN the FGSM method
computes an adversarial perturbation by taking a gradient step

in the loss maximization direction with respect to the input.
This can be expressed simply as:

X ′
N = XN + ϵ · sign

(
∂

∂XN
l
(
YN , ŶN

))
(3)

Where ϵ is the learning rate, or the amount of perturbation
based on the sign of the gradient that is added to the input to
maximize the loss. Note that we only generate the adversarial
samples for the target dataset samples, (XN , YN ). Our task
then is to incorporate these adversarial samples as additional
training samples for the meta-model m(.), effectively doing
data augmentation for the target dataset. Consequently, we
can generate Ŷ ′

N as the model forecasts for the adversarial
samples X ′

N following similar Eq. 1,2. This leads to a multi-
task loss formulation combining learning on the augmented
and the original samples using a weighting parameter w to
increase model robustness:

ℓN = ℓ(YN , ŶN ) + w · ℓ(YN , Ŷ ′
N ) (4)

B. Meta learning with FEML

We aim to learn an initialization Φ from a collection of tasks
i ∈ {1, ..., N − 1} such that, in only a few optimization steps,
the parameters Φ can be adapted to solving a new task N . We
adapt a serialized version of Reptile [24] to learn across
datasets with FEML. We initialize, the two sets of parameters,
Φin ← Φ, θini ← θi and then for a select number of inner
epochs, for the ith sampled task, the shared parameters, Φ
and the task specific parameters, θi are updated as follows:

Φin ← Φin − µin ∂

∂Φin
ℓ
(
Yi, Ŷi

)
θini ← θini − µin ∂

∂θini
ℓ
(
Yi, Ŷi

)
(5)

The meta-update can be expressed with respect to the meta-
gradient, being the difference of the previous and the updated
parameters with learning on ith task :

Φ← Φ− µout(Φ− Φin)

θi ← θi − µout(θi − θini ) (6)

where µin, µout denote the inner optimization and outer opti-
mization learning rates respectively. In the serialized optimiza-
tion, after the meta-gradient updates, the meta-parameters are
adapted to the target dataset. This involves learning on few
samples from the target dataset, (XN , YN ) ∈ DN .

For the target dataset, a new head is initialized, θN . We start
the adaptation by copying the shared parameters Φ into another
set Φad. The parameters updates can be expressed similar to
before, however, with the adversarial multi-task loss, ℓN :

Φad ← Φad − µad ∂

∂Φad
ℓN

(
YN , ŶN , Ŷ ′

N

)
θN ← θN − µad ∂

∂θN
ℓN

(
YN , ŶN , Ŷ ′

N

)
(7)

The optimization routine then involves sampling another task
i ∈ [1, ..., N−1] and updating the parameters by reinitializing
Φin ← Φ, θini ← θi with the meta-gradient updates before



the adaptation. The serial adaptation thus ensures that the
model parameters are not overfit on the target dataset and only
adapted through one epoch over the target dataset samples after
learning on the ith randomly sampled task.

We can note that the above optimization steps involve
updating the shared parameters and only the parameters from
the Linear layer corresponding to the task sampled. This is
in contrast to the standard update in Reptile where no
such differentiation is made with regard to task specific and
shared parameters, and all parameters are updated jointly. We
summarize the method in Algorithm 1.

V. EXPERIMENTS

A. Datasets

We base our experiments on the first comprehensive time
series forecasting repository composed of 25 publicly available
time series datasets published by [10]. The datasets can be
differentiated by distinctive forecast horizons, series lengths,
seasonalities and missing values. Further aggregation across
multiple frequencies like monthly, yearly etc., leads to 43
available time series datasets in total.

In our experiments, we limit ourselves to work with 32
datasets from the available 43, by ignoring datasets without
date-time information and the datasets with a single univariate
series. Additionally, the Monash archive provides the forecast
horizon hi and the lag (observation range) δi defined per
dataset Di based on the human expert evaluation for these
datasets. As a heuristic, the lag δi is computed as the sea-
sonality multiplied with a factor of 1.25. By using this large
collection of datasets, we can study the performance of the
benchmarked baselines and proposed model comprehensively.
We use Intel(R) Xeon(R) CPU E5645 for running all statistical
baseline experiments and NVIDIA GeForce GTX 1080 Ti
for the deep learning experiments. We mark baselines that
required extensive run time (more than 5 days) using “-”
symbol within the results table. All reported results are the
mean of 3 runs. The code1 is open sourced for reproducibility.

B. Evaluation Protocol

1) Validation: A trivial choice for validation is to use
out-of-sample data [18], [20]. However, within the low data
regime, in-sample strategy becomes a more suitable option
[32]. For each dataset Di, we randomly choose 10% percent
of the available Mi many univariate time series for in-sample
validation and train on the rest 90% of the data. In case of
datasets with fewer than 10 time series samples, we randomly
assign 1 of these time series as validation, restricting us to
work with datasets with more than 1 series.

2) Test: During testing, the model forecasts for the next
forecast horizon that was unseen during training.

C. Baselines

Naive Baselines: Our battery of experiments includes
benchmarking the following Naive baselines.

1https://github.com/super-shayan/FEML

1) Mean Forecast: Repeats the mean of the input as the
forecast for the entire horizon.

2) Naive Forecast: Copies the last season as the forecast.

Statistical Baselines : In order to judge the performance
of our method, we compare against well established statistical
baselines:

3) ARIMA [28]: We fit each univariate time series by
varying lagging and differencing hyperparameters.

4) ETS [26]: ETS fits the best exponential smoothing
parameters automatically for a given time series.

5) TBATS [27]: TBATS handles multiple seasonal periods
within a time series. TBATS automatically fits the time
series by selecting the best seasonality parameters, trans-
formation parameters etc.

Single task Learning Baselines: Another interesting set of
baselines are the boosting models and current state-of-the-art
time series forecasting models.

6) XGBoost [42]: Gradient boosted methods are ensemble
models of decision trees. We tune the number of esti-
mators on a grid of [100, 200, 400, 800] per dataset [43].

7) NLinear [18]: NLinear is a normalized single feed-
forward network and requires no hyperparameter tuning.

D. Evaluation

All models are trained using Mean Absolute Error (MAE)
[10]. Table I reports results across multiple datasets, using the
MASE metric. For MN samples, the MASE is computed by
normalizing the MAE of the evaluated model forecast Ŷ with
the MAE corresponding to the Naive forecast Ŷ naive:

MASE =
1

MN

MN∑
j=0

|Yj − Ŷj |
|Yj − Ŷ Naive

j |
(8)

It avoids symmetry issues, scaling issues and division by 0
issues and is a generally applicable scale free measure to
compare across datasets [10]. We use leave-one-out strategy
during evaluation, by considering one dataset as target dataset
DN for eTSF and assuming that the rest of the datasets
Di ∈ {D1, . . . , DN−1} are observed before DN .

VI. RESULTS

Table I, summarizes the experimental results comparing the
proposed FEML model with single task baseline on 32 datasets
with varying (1) number of time series samples per dataset
MN , (2) forecast horizon hN and (3) lag δN . We sort the table
in the increasing order of samples for comparative purposes.
Here, we try to answer the following research questions:

RQ1: How does the proposed FEML compare against
classical and single-task methods?
RQ2: Which statistical baselines are better suited for the
task of eTSF?
RQ3: How do the statistical baselines fair against their
counterpart deep learning baselines?



Table I: Comparison of the proposed FEML with single task
baseline methods based on mean MASE metric. MN , δN , hN

indicate the number of univariate series, input sequence length
and the forecast horizon for the target dataset respectively.
Dataset MN δN hN Mean Arima ETS TBATS XGBoost NLinear FEML
Aus. Elecdemand 5 420 336 2.009 2.045 2.164 1.195 1.574 1.188 0.969
Bitcoin 18 9 30 0.989 0.684 0.846 1.026 1.391 0.889 1.025
Pedestrians 66 210 24 1.514 1.501 2.466 0.897 0.493 0.546 0.475
FRED-MD 107 15 12 0.574 0.415 1.161 2.318 1.021 1.698 0.812
NN5 Weekly 111 65 8 0.852 0.691 0.720 0.709 0.699 1.179 0.734
NN5 Daily 111 9 56 0.900 0.874 0.883 0.941 0.645 0.587 0.596
Solar Weekly 137 6 5 1.496 0.554 1.277 1.189 1.368 1.681 1.366
M1 Yearly 179 2 6 1.020 0.920 1.006 1.253 1.337 0.994 0.639
M1 Quarterly 203 5 8 0.933 0.944 0.992 0.930 0.940 1.152 1.059
COVID 266 9 30 1.007 0.948 0.976 0.952 1.213 0.950 0.974
KDD 270 210 168 0.672 0.947 1.037 0.997 0.714 0.863 0.791
Electricity Weekly 321 65 8 1.409 1.361 1.767 0.884 2.882 0.902 1.267
Electricity Hourly 321 30 168 2.472 2.360 3.648 1.037 2.471 1.325 1.313
Vehicle Trips 329 9 30 0.954 1.020 1.015 1.069 1.133 0.792 0.882
M4 Weekly 359 65 13 0.999 0.845 0.824 0.728 0.837 0.891 0.776
Tourism Monthly 366 15 24 1.106 1.075 1.122 0.988 0.817 0.624 0.625
M4 Hourly 414 210 48 2.224 1.393 2.353 0.805 1.029 0.992 0.730
Tourism Quarterly 427 5 8 0.819 0.869 0.754 0.884 0.750 0.537 0.621
Tourism Yearly 518 2 4 0.973 0.949 0.928 0.842 1.017 0.951 0.633
M1 Monthly 617 15 18 0.917 0.916 0.874 1.003 1.174 0.843 0.880
M3 Yearly 645 2 6 1.011 0.948 0.998 1.110 1.012 1.001 1.304
M3 Quarterly 756 5 8 0.890 0.882 0.843 0.864 0.795 0.809 0.712
Hospital 767 15 12 0.848 0.857 0.910 0.910 1.343 0.752 0.841
Traffic Weekly 862 65 8 0.797 0.560 0.544 0.655 0.716 0.620 0.664
Traffic Hourly 862 30 168 1.420 1.405 1.575 1.051 1.046 1.248 1.045
M3 Monthly 1428 15 18 0.896 0.910 0.873 0.804 0.892 0.804 0.896
Carparts 2674 15 12 0.910 0.982 0.948 1.034 0.908 0.899 0.648
M4 Daily 4225 9 14 0.948 0.954 0.801 0.892 0.917 0.800 0.796
M4 Quarterly 23792 5 8 0.899 0.886 0.821 - 0.784 0.787 0.767
Temp. Rain 32072 9 30 0.861 0.904 0.945 1.521 1.189 0.904 0.941
M4 Monthly 47776 15 18 0.928 0.783 0.704 - 0.727 0.707 0.683
Kaggle Weekly 145063 10 8 0.977 0.963 0.991 - 1.113 0.941 0.879

Wins 2 6 1 5 0 6 12
% Wins 6.25 18.75 3.125 15.625 0 18.75 37.5

RQ1: FEML vs classical and single-task methods

From Table I, it is clear that the proposed FEML model
outperforms the baselines by winning in 12 out of the 32
or 37.5% of all the datasets. The ability of the proposed
FEML model to distil useful information across datasets along
with adversarial augmentation technique evidently provides
the model an advantage for the task of eTSF. For context, the
reported results in Monash forecasting archive [10] show that
the best performing method is able to win in 19% of datasets
for the task of general time series forecasting. Transforming
the general time series forecasting dataset to eTSF adds
another complexity that only a few observations from target
datasets are available. Moreover, the proposed FEML method
wins in twice as many datasets versus the second-best baseline.

RQ2: Comparison of statistical baselines for eTSF

As described before, in the eTSF setting, statistical methods
should be viewed as strong baselines. Among the statisti-
cal baselines, ARIMA model outperforms other statistical
baselines, especially for short forecast horizons. In general,
TBATS, being a more sophisticated technique and containing
ARMA errors, should outperform the simpler ARIMA model,
however, tuning the large hyperparameter space in TBATS
might restrict the performance of the model in low data regime.

RQ3: Statistical baselines vs Learned baselines

Among the learned baselines, NLinear performs at-par with
the ARIMA model by winning in 6 out of the 32 datasets,
whereas, the XGBoost model is unable to win in any of 32

datasets, even though the complexity for the XGBoost model
was tuned by varying the number of estimators.

VII. ABLATION

In this section, we try to analyze each component of the
proposed FEML model for eTSF.

RQ4: Does the proposed multi-head architecture perform
better than a single shared head architecture?
RQ5: Does the proposed adversarial augmentation strategy
improve performance of a base model, for eTSF?
RQ6: How does the proposed FEML compare against
other meta-learning methods for eTSF?
The experiments were conducted on the same 32 benchmark

datasets and using a similar experimental setup as described in
Section V-B. We present the results of the experiments as the
number of wins in a head-to-head comparison Fig. 3, where
the x-axis shows the datasets arranged in ascending order of
the number of samples per dataset (MN ), and the y-axis shows
the sum of wins across the number of datasets.

RQ4 : Multi-head Forecasting Model

Useful forecast horizon for a particular time series dataset
depends on the use-case for that dataset. We build our model
on top of this premise and compare FEML without adversarial
learning (M-Reptile) with that of a single-head model (S-
Reptile) to handle the flexible horizons across datasets. The
S-reptile model is a single head model with a shared last
linear layer having as many output neurons as the largest
forecast horizon. For datasets requiring fewer forecast horizon,
we ignore the outputs produced from the extra output nodes.

Figure 3a, compares the number of wins (y-axis) across the
number of datasets (x-axis) for the M-Reptile and S-Reptile
model. The results show that M-Reptile model wins on more
number of datasets in comparison to the S-Reptile model,
indicating that a shared output layer across datasets has an
adverse effect on the expressiveness of the model. The M-
Reptile model with dataset specific multitask heads helps the
model to learn dataset specific parameters, which aids the
model in outperforming its shared single head counterpart.

RQ5: Advantage of Adversarial Augmentation

In order to understand the advantage offered by the adver-
sarial augmentation, we perform experiments on two baseline
models (NLinear and M-Reptile) and show that the adversarial
augmentation improves the number of wins in comparison to
the base model. Figure 3b highlights the improvement for a
single task baseline NLinear with the addition of adversarial
augmented examples. For the single task baseline, adversarial
examples prove advantageous, especially when the number of
samples within the dataset are few. The adversarial samples
improve robustness of the baseline models by providing ad-
ditional samples of the same distribution as the input data,
that mitigates overfitting. Furthermore, the improvement is
not limited to single task base models. We performed a
similar experiment with the M-Reptile model to interpret the
improvement brought about by the adversarial samples on top
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(a) RQ4: Multi Horizon Comparison (b) RQ5: Adversarial NLinear (c) RQ6: Adversarial M-Reptile

Fig. 3: X-axis represents the number of datasets and the Y-axis represents the wins gathered across the datasets. (a) Comparison
of wins across datasets for Multi-Head Reptile model (M-reptile) and shared Single-Head Reptile model (S-Reptile). (b) Plot
showing the increase in wins while using adversarial augmentation along with base NLinear base model. (c) Plot showing the
increase in wins while using adversarial augmentation along with M-Reptile base model (also proposed as FEML).

of a meta-learning baseline. Interestingly, Figure 3c shows that
the number of wins increases even further while comparing
the M-Reptile model with and without adversarial samples.
The FEML M-Reptile+Ad model has 4 more wins over the 32
datasets (as can be viewed on the right corner of the image)
in a head-to-head comparison with the M-Reptile model. The
results show that the adversarial augmentation strategy could
be beneficial even in a meta-learning setting.

RQ6: Comparison to Other Meta-Learning Methods

We experiment multiple meta-learning methods to deter-
mine a useful strategy for eTSF. We introduce three additional
baselines for these experiments. All the baselines have similar
architecture as the proposed multi-head architecture from
FEML and differ only in the learning technique employed.

1) Joint Learning: The model is trained on a concatenation
of all the available source datasets {D1, ..., DN−1} and
the support samples from the target dataset represented
as DN . The model does not learn any task specific
embeddings.

2) Multitask Learning (MTL): In MTL the tasks are segre-
gated as target task and auxiliary tasks. For eTSF, the
target task is set as learning on the support samples from
the target data represented as DN and the auxiliary tar-
gets are the information accumulated from the auxiliary
data {D1, ..., DN−1}. Mostly, the target task is heavily
weighted in comparison to the auxiliary tasks, and we
follow the same approach. We set the target task to half
of the total weight and share the rest of the weights
equally among the auxiliary tasks.

3) Reptile: We employ the Reptile training strategy in
FEML and is described in Section IV-B.

The results of the experiment are presented in Figure 4.
The proposed FEML achieves the highest number of wins
when compared to base meta-learning baselines. This could
be attributed to the benefit FEML receives from the additional
adversarial samples. In comparison to the base MTL and Joint
training, Reptile learning algorithm is able to adapt better to
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Fig. 4: Comparison of wins across datasets for various meta-
learning baselines, namely Joint Learning (Joint), Multi-task
Learning (MTL), Reptile, and the proposed FEML.

the fewer samples available for eTSF. Joint training is unable
to win in any of the datasets, and this could be explained away
as joint training does not prioritize the target dataset DN any
more than the auxiliary datasets, leading to poor performance
overall. Multitask Learning (MTL) is able to win in 5 datasets,
however is not as effective as the quick adaptation offered by
the reptile learning algorithm.

VIII. CONCLUSION

In this paper, we formally define the task of Early Time
Series Forecasting (eTSF), which deals with forecasting when
very few observations are available from the target time
series dataset. We propose the FEML model, a meta-learning
based method to assimilate information from other related or
unrelated time series datasets to improve performance on the
target dataset. In addition, FEML is equipped with the proposed
adversarial augmentation strategy that allows FEML to learn
from additional augmented examples of the same distribution
as the target dataset. Experimental results on 32 real world
time series datasets indicate that the proposed FEML model
outperforms statistical, single task and other meta-learning



baselines. We believe this paper provides a foundation for
future work in this direction.

In future works, we plan to further explore useful aug-
mentation strategies especially for eTSF as learning useful
augmented samples from very few observations could prove
beneficial. Research in the direction of a hybrid model that
carefully integrates statistical models and deep learning or
meta-learning models is also an interesting research direction.
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