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Abstract. Deep learning-based defect detection is rapidly gaining im-
portance for automating visual quality control tasks in industrial appli-
cations. However, due to usually low rejection rates in manufacturing
processes, industrial defect detection datasets are inherent to three se-
vere data challenges: data sparsity, data imbalance, and data shift. Be-
cause the acquisition of defect data is highly cost-intensive, and Deep
Learning (DL) algorithms require a sufficiently large amount of data, we
are investigating how to solve these challenges using data oversampling
and data augmentation (DA) techniques. Given the problem of binary
defect detection, we present a novel experimental procedure for ana-
lyzing the impact of different DA-techniques. Accordingly, pre-selected
DA-techniques are used to generate experiments across multiple datasets
and DL models. For each defect detection use-case, we configure a set of
random DA-pipelines to generate datasets of different characteristics. To
investigate the impact of DA-techniques on defect detection performance,
we then train convolutional neural networks with two different but fixed
architectures and hyperparameter sets. To quantify and evaluate the gen-
eralizability, we compute the distances between dataset derivatives to
determine the degree of domain shift. The results show that we can pre-
cisely analyze the influences of individual DA-methods, thus laying the
foundation for establishing a mapping between dataset properties and
DA-induced performance enhancement aiming for enhancing DL devel-
opment. We show that there is no one-fits all solution, but that within the
categories of geometrical and color augmentations, certain DA-methods
outperform others.

Keywords: Deep Learning · Defect Detection · Data Augmentation ·
Manufacturing · Visual Quality Control

1 Introduction

Manufacturing processes have been optimized in recent decades to achieve min-
imum reject rates and high product qualities. However, as product and pro-
cess complexities increase, the importance of reliable quality continues to grow.
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Defects such as internal holes, pits, abrasions, and scratches on workpieces or
knots, broken picks, and broken yarn in fabrics [28] negatively impact both visual
and functional product properties [36]. Defects also contribute to the additional
wastage of resources, safety hazards, and can have severe economic consequences
for a company. Therefore, reliably assuring the quality of manufactured products
is of paramount importance in manufacturing. One of the famous and contem-
porary solutions towards achieving the goal of a fully automated quality control
system is through deep learning (DL)-based computer vision. DL algorithms
improve over existing rule-based systems in terms of generalization and perfor-
mance, while requiring less domain expertise [9,19,22]. However, a major disad-
vantage of data-driven approaches compared to rule-based techniques lies in the
strong dependency of model precision on data quantity, data quality, and the
evolution of the data over time (data drift) [31]. While the focus in recent years
has been on the development of advanced network architectures (e.g., ResNet-
50 [8] or Inception-v3 [32]), the progress that is being made in model-space is
increasingly diminishing. As a result, the development is shifting more towards
data-centric approaches, especially in real-world domains like for example man-
ufacturing or medical diagnostics. Table 1 provides an overview of the main
data challenges that are characteristic for image data acquired from produc-
tion processes. These properties form a strong contrast to the ones of (research)
datasets (e.g., ImageNet [3], COCO [17], MNIST [16]) used for developing and
benchmarking of deep neural network architectures and DL-algorithms, which
is why the approaches from research are difficult to transfer one-to-one to such
complex defect detection use-cases.

Data Quality Issue Description

Amount of data Difficulty in collecting sufficiently large amounts of data.
Label inconsistencies Labor-intensive task that is oftentimes ambiguous and usually requires

multiple domain-experts
Data imbalance Defective parts tend to be significantly underrepresented compared to non-

defective ones
Changing lightning con-
ditions

Contrasts and brightness changes across different work shifts

Exposure issues Reflections and shadows cast by complex components
Sensor failure Image failures or high noise-levels due to sensor degradation amplified by

harsh environments
Changing object poses Especially in mass production often different orientation of components
Changing appearances Changes in the appearance of a product from time to time can make the

data previously collected unusable.

Table 1: Causes of data quality issues in DL-based visual defect detection in
terms of data sparsity, data imbalance and data shift

Data augmentation (DA) represents a data-space solution addressing the
above mentioned data quality challenges. There are various DA techniques that
aim for changing both the geometrical and visual appearance of images to im-
prove both performance and robustness properties of deep neural networks. The
most common DA techniques are geometric transformations, color augmenta-
tions, kernel filters, mixing images and random erasing [39]. Even though DA is
already an integral part of DL pipelines, different DA-methods are often blindly
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applied based on empirical knowledge and require elaborate tuning for specific
datasets. To analyze the impact of different DA-methods on both precision and
generalization for the task of visual defect detection, this paper introduces our
experimental procedure in Section 3.3, presents the results in Section 4.2 and
finally derives insights about the studied DA-methods in Section 5. Section 3.2
introduces the three real-world datasets which we work with. Our DA-methods
are chosen according to a preliminary study of related papers that is summarized
in Sections 2 and 3.3.

2 Related Work

This section provides a brief overview of work that addresses the generalization
problem, DA approaches, and its impact on real-world DL tasks. One central
drawback of real-world datasets is that the models trained on them do not gen-
eralize well as these datasets are prone to domain shift [40]. In recent years
model-centric techniques such as dropout [29], transfer learning [34], and pre-
training [4] have tried to address the issues of generalization, particularly in
deep neural networks. DA tries to avoid poor generalization by solving the root
problem of training data [27] rather than changing the model or training pro-
cess. Applications of DA can be found in various works across multiple domains
such as natural language processing [6], computer vision [27], and time series
classification [11]. Particularly in computer vision tasks DA has been applied
to address the domain generalization problem [24, 33, 35]. Many papers exist
that apply and analyze basic DA-techniques (e.g., oversampling and data warp-
ing on histopathological images [5]) and advanced methods (e.g., stacked DA
on medical images [38], style-transfer augmentations [12], cGan, and geometric
transformations [21]) for specific use cases and datasets.

Fewer papers exist that provide an overview of DA-methods and try to exam-
ine their influences on model accuracy. The survey of Shorten et al. [27] presents
a comprehensive overview of DA and present the impact examination of individ-
ual methods on well-known datasets (e.g., CIFAR-10, MNIST, Caltech101) in
an isolated manner of pairwise comparisons. Shijie et al. [26] explore the impact
of various DA-methods on image classification tasks with CNNs. On subsets of
CIFAR10 and ImageNet, they conduct pair and triple comparisons to identify
best-performing DA-techniques and to draw general conclusions. Yang et al. [37]
systematically review different DA-methods and propose a taxonomy of reviewed
methods. For semantic segmentation, image classification, and object detection,
they compare the performances of different model architectures on datasets (e.g.,
CIFAR-100, SVHN) with and without pre-defined set of DA-techniques. The
survey paper of Khosla et al. [15] presents an overview of selected DA-methods
without conducting further effect analyses. In addition to generic studies on sci-
entific datasets, a few domain-specific approaches exist. The only related work
on DA in defect detection is provided by Jain et al. [13]. They propose a DA-
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framework utilizing GANs which they use to investigate data synthetization for
classification of manufacturing datasets.

Scientific Impact Existing studies are almost exclusively conducted on scien-
tific datasets and no reference is made to specific application domains (with the
exception of [13]). To the best of our knowledge, there is currently no prelimi-
nary work, that examines the impact of DA-methods specific to DL-based visual
quality control in manufacturing datasets in an unconstrained setting (i.e. only
pairwise evaluations).

3 Approach

In this section, we present our approaches and procedures. Section 3.1 defines
the mathematical problem of binary defect detection. Section 3.2 introduces
the datasets considered in this study and their properties. The experimental
procedure, the domain shift measure, and the evaluation metrics are presented
in Section 3.3.

3.1 Binary Defect Detection Problem Definition

For binary visual defect detection, the input feature space is denoted by X and
Y denotes the target space. We define the domain as a joint distribution PXY

on X × Y and the dataset as D = {(Xi,Yi)}Ni , where N is the number of train-
ing examples. In this work, X 1, X 2, X 3 comprises images from three datasets,
namely: (1) AITEX fabric defects [28], (2) Magnetic tile defects [10], and (3)
TIG Aluminium 5083 welding defects [1]. We define the binary classification
problem where Y ∈ {Defected, Non-defected}. Furthermore, the DL model is
defined as f : X → Y, where the primary objective is to learn a mapping
from the input space X to target space Y. In this work f ∈ {ResNet-50 [8],
Inception-V3 [32]}. The predictions generated using model f are denoted as Ŷ.
The categorical cross entropy loss function is defined as ℓ : Y×Ŷ → [0,∞). Each
dataset D = {(Xi,Yi)}Ni is augmented using various DAs, where θ denotes the
list of all DAs, and a new augmented dataset is generated as D1 = θ(D). For
each dataset, ten DA-pipelines with varying DAs are constructed to create ten
different data sets D1 .. D10.

3.2 Presentation of the Datasets

Three real-world industrial-grade datasets are used in this work. An overview
of examplary images is provided in Figure 1. The Magnetic tile defects dataset
(MagTile) contains a total of 1,344 images of magnetic tiles with five defect
types: blowhole, crack, fray, break, uneven (grinding ), and free (no defects).
AITEX is a fabric production dataset containing 246 images of 4,096 x 256 pixels
that capture seven different fabric structures. In total, there are 140 defect-free
images, 20 for each type of fabric, and there are a total of 105 images with
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defects. The TIG Aluminium 5083 welding seam dataset (TIG5083) contains
33,254 images of aluminium weld seams and the surrounding area of the weld
seam, with six classes: good weld, burn through, contamination, lack of fusion,
misalignment, and lack of penetration. We convert the multi-class classification
task of all datasets into a binary classification problem by merging all individual
defect types into a single defect class.

Fig. 1: Exemplary raw images of the datasets studied: AITEX (a), MagTile (b),
and TIG5083 (c)

3.3 Experiment Procedure

To evaluate the impact of DA-techniques we propose a three-stage process: First,
for each dataset, apply a DA-pipeline and evaluate model performance on dif-
ferent test sets. Second, measure the domain shift between the train set and
the test sets. Third, correlate the achieved performance with the domain shift.
This framework provides insight into the effects of different DAs on model per-
formance, domain shift, and, through the correlation of both, the generalization
capabilities of the trained model. An overview of our algorithm can be found
in Figure 2. We assume a standard train-test split of 80/20 and further a val-
idation split of 60/20 (based on the 80% train split). Additionally, we create a
hold-out test set by splitting off one of the defect classes per dataset before they
are merged (see Section 3.2). This hold-out set serves as an additional out-of-
distribution test set to measure the generalization capabilities of the model. We
apply DA in two different settings. For AITEX and MagTile, augmented data-
points were added as new instances, retaining the original ones. This was done to
increase the overall number of instances in the dataset and stabilize training. For
TIG5083, augmented datapoints replace the originals since the dataset already
contains enough images for training. The hold-out class for the AITEX data set
was ’Broken end’, the hold-out class for Magnetic tile defects was ’Crack’, and
the hold-out class for TIG Aluminium 5083 was ’contamination’ class.
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Fig. 2: Experiment protocol for constructing the DA-pipelines, training, and eval-
uating the defect detection model

Data Augmentation Pipelines In order to pre-select the DA-steps for this paper,
a survey was conducted across 24 papers dealing with 6 major industrial image
data sets. Table 2 describes all available augmentations for each dataset. From
these augmentation pools, different pipelines for each dataset were constructed.
For each pipeline, two of the augmentations are reserved for the test set and are
later referred to as test augmentations. The remaining DAs have a 0.5 chance of
being applied to the training set. This process is repeated ten times (see Table 3).
Appendix A.1 provides an overview of selected un-augmented and augmented
images for all three datasets.

TIG5083 AITEX MagTile

1. Gaussian Noise 1. Gaussian Noise 1. Salt & Pepper Noise
2. Transpose Image 2. Transpose Image 2. Transpose Image
3. Flip Image 3. Flip Image 3. Flip Image
4. Perspective Transformation 4. Random Perspective 4. Random Perspective
5. Add Brightness 5. Color Jitter 5. Color Jitter
6. Affine Transformation 6. Moving Least Squares (MLS) 6. MLS [25]

7. Random Erase [39] 7. Retinex [14,23]
8. Random Rotate

Table 2: Preselected set of DA-methods for TIG5083, AITEX, and MagTile

Nr. Train & Validation augmentations Test augmentations

1 Random Perspective, Flip Image, Color Jitter Random Rotate, Transpose Image
2 Flip Image, Random Perspective Transpose Image, Random Erase
3 Gaussian Noise, Color Jitter, Random Per-

spective, Random Rotate, Flip Image
Random Erase, MLS

4 Random Erase, MLS, Gaussian Noise Color Jitter, Random Perspective
5 Random Rotate, MLS, Gaussian Noise Transpose Image, Flip Image
6 Random Perspective, Random Rotate Gaussian Noise, MLS
7 Random Erase, AddNoise, Color Jitter Random Rotate, Random Perspective
8 Random Rotate, Random Erase, Flip Image,

Color Jitter
Random Perspective, Gaussian Noise

9 Color Jitter, Random Rotate, Gaussian Noise MLS, Random Perspective
10 Random Perspective Random Rotate, MLS

Table 3: Train, validation, and test set DA-Pipelines (AITEX)
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Domain Shift Measures We use an algorithm proposed by [30] for measuring
the domain shift between datasets. In computer vision tasks, calculating domain
shift can be seen as calculating the difference in representation by a model given
the source and target domain. Given that a source domain is distant from the
target domain, the representation of the domains in the learned space for a
specific model tends to diverge. The authors used the activation values from
the model’s last layers to quantify the domain shift. Specifically, by creating a
statistical distribution using each kernel’s activation value in those layers, we
can measure the distance between the datasets using the Wasserstein distance.

Evaluation Metrics To evaluate the results of the binary classification problem,
various metrics such as F1-Score, precision, recall, Jaccard similarity [7], Cohen’s
kappa score [20], and Matthews correlation coefficient (MCC) [2] are used. Since
the datasets are imbalanced even after applying DA, all metrics (Jaccard, preci-
sion, recall, and F1-Score) are weighted by the class distribution. We use multiple
different evaluation metrics, as they all slightly deviate from each other. In this
way, we circumvent the difficulties due to the sensitivity of individual metrics and
obtain a more conclusive evaluation. Since all these scores are bound between
[0, 1] we average all of them for our reporting of final performance values.

4 Results

In this section, we present the results. Section 4.1 defines the training and imple-
mentation procedure. Section 4.2 provides an overview of the protocol followed
to evaluate the results at the example of the AITEX dataset. Section 4.3 presents
the results of our ablation study.

4.1 Training and Implementation

For controlling the model training, a validation set is split of from the augmented
training set. The model is evaluated on the original test set, augmented test sets
(using the two reserved test augmentations) and the hold-out set as described
in Section 3.3. The hold-out class for the AITEX data set was ’Broken end’,
the hold-out class for MagTile defects was ’Crack’, and the hold-out class for
TIG5083 was ’contamination’. As models for our experiment, ResNet-50 and
Inception-v3 were chosen, as both are widely used in the literature about indus-
trial applications. The learning rate for both models is set to 10−3, the Adam
optimizer [18] is used and the first-layer input shape of the networks is set to
224 and 299 respectively. We initialize the networks using pre-trained weights
(ImageNet) for both architectures. DL is enhanced via transfer learning with
50 epochs of frozen weights in the encoder (shallow training) and additional 30
epochs of fine-tuning the entire model (deep training). Similarly to the evaluation
metrics, the class-balanced version of the loss function was employed to stabilize
the learning process. The data for each experiment was normalized according to
the statistics of the train set after applying DA.



8 L. Leyendecker, S. Agarwal, T. Werner et al.

4.2 Results for the AITEX Dataset

Figure 3 depicts the average F1-Score across both the models and across the DA
steps for each test set. The values are obtained by averaging the performance
of each pipeline that contains the respective augmentation. We observe that the
performance on the original test and, to a lesser extent, the augmented test
set remains stable, but on the hold-out set (highest amount of domain shift)
the model performance has significantly deteriorated. The top three DA-steps
for AITEX dataset are MLS, Gaussian noise and random rotating. As stated
in Section 3.3, we also averaged the performance across multiple other metrics,
since they all slightly differ from each other. Similar trends can be observed in
Figure 4.

Next, the distance between the train set (source domain) and the test sets
(target domain) was calculated for all the models and datasets. Table 4 contains
the mean and standard deviation across all the pipelines for the AITEX dataset
and ResNet-50 model. The domain shift increases from the original test set to
the augmented test set to the hold-out set. Finally, the domain shift is correlated
to the respective F1-Scores, as Wasserstein distance alone lacks interpretability.

Train/Test Train/Aug test Train/Hold out
0.0764±0.0831 0.0808±0.0804 0.1841±0.1981

Table 4: Domain shift measure averaged across DA-pipelines for the last layer
of ResNet-50 (AITEX)

A negative correlation means that with increasing domain shift the perfor-
mance of the model on the test data decreases. Therefore, a greater correlation
is desirable. Table 5 contains the Pearson correlations between the distance mea-
sure and F1-Scores across all test sets. Since the domain shift is measured based
on a single layer of the model we evaluated the last three layers of each model
and reported the values separately in the columns. The correlation values don’t
change depending on the layer used, but we observe two outliers in the pipelines
that display a weaker correlation between domain shift and model performance.
Further information can be found in Appendix A.2. The same evaluation proto-
col was followed for evaluating the results across the other two datases as well
and similar trends were observed. The results TIG5083 and MagTile can be
found in Appendix A.3.
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Fig. 3: F1-Score averaged across models for each DA-method (AITEX). Sorted
by hold-out performance.

Fig. 4: Averaged Jaccard, precision, recall, kappa and MCC scores across models
for each DA-method (AITEX). Sorted by hold-out performance.
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Pipeline Inception v3 ResNet-50 Mean
Last layer 2nd Last layer 3rd Last layer Last layer 2nd Last layer 3rd Last layer

1 -0.996 -0.996 -0.998 -0.999 -0.999 -0.999 -0.998± 0.002
2 -0.727 -0.734 -0.505 -0.941 -0.940 -0.979 -0.804± 0.167
3 -0.989 -0.990 -0.971 -0.960 -0.967 -0.986 -0.977± 0.012
4 -0.970 -0.972 -0.995 -0.352 -0.317 -0.530 -0.689±0.297
5 -0.916 -0.916 -0.986 -0.900 -0.905 -0.979 -0.934± 0.035
6 -1.000 -1.000 -1.000 -0.917 -0.931 -0.996 -0.974±0.036
7 -0.999 -0.996 -0.988 -0.935 -0.946 -0.826 -0.948±0.060
8 -0.999 -0.998 -1.000 -0.955 -0.916 -0.974 -0.974±0.0307
9 -0.952 -0.955 -1.000 -0.341 0.121 -0.785 -0.652±0.411
10 -0.994 -0.994 -0.991 -0.989 -0.987 -0.994 -0.991±0.003

-0.954 ± 0.084 -0.955 ± 0.082 -0.943±0.154 -0.829±0.256 -0.779±0.375 -0.905±0.152

Table 5: Pearson correlations between the domain shift and model F1-Scores
(AITEX). The bold values represent the largest negative mean correlations value.

4.3 Results of the Ablation Study

In addition to the average score presented in Section 4.2, we draw additional
insights from comparing performances across all models and datasets. Figure 5
depicts the stacked bar plot of weighted F1-Scores averaged across all datasets
and models for each augmentation that was available for the dataset. Across all
the experiments, affine transformations, moving least squares (MLS) and ran-
dom rotation DA techniques performed the best. Similarly, Figure 6 depicts the
average of the scores across all other evaluation metrics. We can observe similar
trends where on average across experiments affine transformations, perspective
transformation and MLS perform the best.

Fig. 5: F1-Scores averaged across all augmentations steps in the train sets
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Fig. 6: Jaccard, precision, recall, kappa and MCC scores averaged across all aug-
mentations steps in the train sets

5 Conclusion

DL offers enormous potential to automate complex visual quality control tasks
that cannot be solved using rule-based methods. However, manufacturing ap-
plications entail three severe data challenges: data sparsity, data imbalance and
data shift. DA-methods have become an integral part of DL-pipelines to improve
both performance and generalization. To provide precise assistance for the se-
lection of DA-methods for developing DL-based quality control in the future,
in this paper, we present an experiment protocol. Thereby, we aim to evaluate
the impact of individual DA-methods on defect detection performance depend-
ing on dataset characteristics. We apply this protocol to three defect detection
use-cases, present and interpret the results.

Using our approach, we can evaluate the influences of each DA method on
the model metrics in detail. We show how to determine the domain shift between
genuine and augmented dataset derivatives and therefore providing a measure
and interpretability for choosing the degree of DA. By correlating this domain
shift with F1-Scores, the strength of the positive influence of a DA-pipeline
on bridging the domain shift can be determined. Applying our protocol to the
datasets, we obtain the three best DA-methods MLS, Gaussian noise, random
rotating (AITEX), image transpose, random perspective, salt & pepper noise
(MagTile), and affine transformation, perspective transformation, image trans-
pose (TIG5083). Thereby we confirm that the performance improvement of DA-
methods depends on dataset characteristics, the DL-task to be solved and the
degree of DA. This shows that there is no one-fits-all solution, but at the same
time makes it all the more clear that establishing a mapping between dataset
properties (e.g., degree of imbalance, defect sizes, positional variance of defects)
and DA-induced performance enhancement will enable tailor-made and precise
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DL-pipeline development, especially in real-world applications.

Correlating the found performances with the respective domain shift revealed
additional insights. The two pipelines for the AITEX dataset that induced the
weakest negative correlation between domain shift and performance were mainly
composed of our three best-performing augmentations for that dataset (see ta-
ble 5 pipeline 4,9). Additionally, we found that the worst performing pipelines
either had very few augmentations or contained badly performing augmenta-
tions in them (mainly ”random rotate” for AITEX), further highlighting the
need for tailor-made DA-pipelines for each dataset. Our ablation study showed
that (in contrast), by averaging the results over all datasets and models, at least
some augmentations do perform better than others on average. The better-
performing augmentations are the more complex ones, showcasing their versa-
tility and robustness, while simple of-the-shelf augmentations display the least
amount of lift in model performance. Figure 6 can serve as a benchmark of aug-
mentation techniques for new industrial-grade datasets, or those with unknown
properties.

With the proposed protocol, we lay the foundation for determining the ap-
propriateness of DA-methods for specific data properties in an analytical ap-
proach. We will include also more advanced DA-methods and extend the study
to additional domain-specific datasets to provide more validity to the results. By
establishing a catalog of dataset properties to which we can map the results of
the study, we aim to develop a domain-specific decision support system for choos-
ing optimal DA-pipelines for DL-enhanced visual quality control applications in
manufacturing.
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A Appendix

A.1 Dataset Illustrations

Fig. 7: Selection of AITEX [28] images: train set (a), test set (b), hold-out set
(c), and augmented test set (d)

Fig. 8: Selection of MagTile [10] images: train set (a), test set (b), hold-out set
(c), and augmented test set (d)
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Fig. 9: Selection of TIG5083 [1] images: train set (a), test set (b), hold-out set
(c), and augmented test set (d)
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A.2 Domain Shift Calculations

The distance measure does not have good interpretability alone. Hence, we cor-
relate the distance measure to the F1-Scores, a negative correlation is expected
between them where the distance should be smaller, and the F1-Scores should
be higher. Table 6 provides the distance measures for the averagepool layer of
the ResNet-50 model across train and test sets, where the first three columns
represent the distance and the following three columns represent the F1-score for
the same pipelines. We take Pearson correlations along each pipeline, correlat-
ing the distance measure with the corresponding performance metric. Similarly,
repeating this process for the last layers of both the models gives us Table 5.
The same procedure was followed to construct similar tables for MagTile defects
and TIG5083 dataset. Furthermore, we take the mean across the last layers of
the models.

Pipeline Averagepool layer ResNet-50(Distance) Test results on ResNet-50

Train/Test Train/Aug test Train/Hold out Test Aug test Hold out
1 0.0314 0.04008 0.13468 0.93218 0.91231 0.36298
2 0.30067 0.29725 0.72971 0.94262 0.81365 0.56211
3 0.05871 0.02578 0.14406 0.93388 0.92921 0.56211
4 0.01909 0.09311 0.0724 0.95699 0.90933 0.56211
5 0.07192 0.03547 0.16015 0.95217 0.92163 0.77694
6 0.09642 0.05205 0.16251 0.92431 0.92431 0.36298
7 0.04293 0.09987 0.16797 0.94673 0.87684 0.36298
8 0.02218 0.02751 0.03917 0.92921 0.92262 0.36298
9 0.03592 0.06176 0.0556 0.94262 0.92431 0.6417
10 0.0843 0.07488 0.17482 0.94046 0.89822 0.36298

Table 6: Wasserstein distance between the augmented train set and all test sets
for ResNet-50 and corresponding model F1-Scores

A.3 Results

MagTile Dataset

Nr. Train & validation Augmentation Test Augmentation

1 Color Jitter, Salt & Pepper Noise Flip Image, Transpose Image
2 Random Perspective, Flip Image Salt & Pepper Noise, Retinex
3 Retinex, MLS Salt & Pepper Noise, Random Perspec-

tive
4 Transpose Image, Random Perspective MLS, Retinex
5 Color Jitter, Retinex, Salt & Pepper Noise MLS, Flip Image
6 MLS Retinex, Salt & Pepper Noise
7 Retinex, Color Jitter, MLS Flip Image, Transpose Image
8 Random Perspective MLS, Flip Image
9 Transpose Image Random Perspective, Flip Image
10 Salt & Pepper Noise, Flip Image, Random

Perspective, Retinex
MLS, Transpose Image

Table 7: Train, validation and test set DA-Pipelines (MagTile)
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Fig. 10: F1-Scores averaged across models for each DA-method (MagTile). Sorted
by hold-out performance.

Fig. 11: Jaccard, precision, recall, kappa and MCC scores averaged across models
for each DA-method (MagTile). Sorted by hold-out performance.

Pipeline Inception v3 ResNet-50 Mean

Last layer 2nd Last layer 3rd Last layer Last layer 2nd Last layer 3rd Last layer
1 -0.42134 -0.29361 -0.17805 -0.908 -0.92141 -0.99612 -0.61976±0.3308
2 -0.87905 -0.77159 -0.75817 -0.98297 -0.91635 -0.98849 -0.88277±0.09151
3 -0.99165 -0.86321 -0.89364 -0.99371 -0.95432 -0.97724 -0.94563±0.05
4 -0.07302 -0.64191 -0.95817 0.86934 -0.99643 -0.63085 -0.40517±0.64512
5 -0.99206 -0.99545 -0.99109 -0.99631 -0.99184 -0.99959 -0.99439±0.00302
6 -0.27443 -0.28848 -0.41971 -0.85509 -0.91592 -0.90101 -0.60911±0.28593
7 -0.99722 -0.99293 -0.9993 -0.40914 -0.5799 -0.98809 -0.82776±0.24077
8 -0.98136 -0.87428 -0.90671 -0.71458 -0.83115 -0.99136 -0.88324±0.09408
9 -0.98295 -0.93676 -0.82706 -0.94623 -0.96887 -0.9424 -0.93404±0.05046
10 -0.98475 -0.97233 0.05444 -0.98154 -0.99635 -0.9711 -0.8086±0.38606

-0.7578 ± 0.3574 -0.7631 ± 0.2715 -0.6877±0.3741 -0.6918±0.5782 -0.9073±0.1258 -0.9386±0.1123

Table 8: Pearson correlations between the domain shift and model F1-Scores
(MagTile). The bold values represent the largest negative mean correlations
value.
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TIG5083 Dataset

Nr. Train & validation Augmentation Test Augmentation

1 Add Brightness Affine Transfomer, Perspective Transfor-
mation

2 Add Brightness, Gaussian Noise Transpose Image, Affine Transfomer
3 Transpose Image, Perspective Transforma-

tion, Affine Transfomer
Flip Image, Gaussian Noise

4 Gaussian Noise, Perspective Transformation Transpose Image, Flip Image
5 Transpose Image, Affine Transfomer, Add

Brightness
Gaussian Noise, Flip Image

6 Transpose Image, Add Brightness
7 Gaussian Noise, Transpose Image Perspective Transformation, Flip Image
8 Gaussian Noise Add Brightness, Affine Transfomer
9 Transpose Image, Add Brightness, Flip Image Perspective Transformation, Gaussian

Noise
10. Perspective Transformation, Gaussian Noise Flip Image, Transpose Image

Table 9: Train, validation and test set DA-Pipelines (TIG5083)

Pipeline Inception v3 ResNet-50 Mean

Last layer 2nd Last layer 3rd Last layer Last layer 2nd Last layer 3rd Last layer
1 -0.81792 -0.81945 -0.82353 -0.82422 -0.85945 -0.83561 -0.83003±0.01433
2 -0.95836 -0.95362 -0.96833 -0.99884 -0.9493 -0.93576 -0.9607±0.01966
3 -0.92238 -0.90818 -0.24479 -0.91736 -0.9626 -0.90916 -0.81074±0.25376
4 -0.61701 -0.84784 -0.78521 -0.7663 -0.8051 -0.85062 -0.77868±0.07852
5 -0.99923 -0.96855 -0.93786 -0.99872 -0.98831 -0.98185 -0.97909±0.02119
6 -0.76129 -0.76871 -0.8904 -0.87209 -0.82126 -0.8541 -0.82798±0.04921
7 -0.98311 -0.98905 -0.97248 -0.47366 -0.33301 -0.36318 -0.68575±0.29891
8 -0.9528 -0.96702 -0.93089 -0.95038 -0.99583 -0.96655 -0.96058±0.01985
9 -0.80877 -0.87399 -0.75693 -0.7757 -0.78879 -0.83407 -0.80638±0.03882
10 -0.77332 -0.98553 -0.73991 -0.95172 -0.90796 -0.94447 -0.88382±0.09322

-0.8594 ± 0.1236 -0.9082 ± 0.0773 -0.805±0.2152 -0.8529±0.1579 -0.8412±0.1942 -0.8475±0.1789

Table 10: Pearson correlations between the domain shift and model F1-Scores
(TIG5083). The bold values represent the largest negative mean correlations
value.
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Fig. 12: F1-Scores averaged across models for each DA-method (TIG5083).
Sorted by hold-out performance.

Fig. 13: Jaccard, precision, recall, kappa and MCC scores averaged across models
for each DA-method (TIG5083). Sorted by hold-out performance.


