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Abstract—Hyperparameter optimization is often done manu-
ally or by using a grid search. However, recent research has shown
that automatic optimization techniques are able to accelerate this
optimization process and find hyperparameter configurations that
lead to better models. Currently, transferring knowledge from
previous experiments to a new experiment is of particular interest
because it has been shown that it allows to further improve the
hyperparameter optimization.

We propose to transfer knowledge by means of an initial-
ization strategy for hyperparameter optimization. In contrast to
the current state of the art initialization strategies, our strategy
is neither limited to hyperparameter configurations that have
been evaluated on previous experiments nor does it need meta-
features. The initial hyperparameter configurations are derived
by optimizing for a meta-loss formally defined in this paper. This
loss depends on the hyperparameter response function of the data
sets that were investigated in past experiments. Since this function
is unknown and only few observations are given, the meta-loss
is not differentiable. We propose to approximate the response
function by a differentiable plug-in estimator. Then, we are able
to learn the initial hyperparameter configuration sequence by
applying gradient-based optimization techniques.

Extensive experiments are conducted on two meta-data sets.
Our initialization strategy is compared to the state of the art
for initialization strategies and further methods that are able to
transfer knowledge between data sets. We give empirical evidence
that our work provides an improvement over the state of the art.

I. INTRODUCTION

Tuning hyperparameters is an omnipresent problem for
practitioners and researchers in the data mining domain. The
performance of an algorithm highly depends on an ade-
quate hyperparameter configuration choice which requires the
necessary expertise in the respective domain. In contrast to
model parameters, hyperparameters are often tuned manually
in combination with a grid or random search [1]. Recent
research proposes automatic hyperparameter optimization tech-
niques that can find good hyperparameters in less time than
usual optimization methods and are even able to find better
hyperparameters configurations than human experts [2], [3],
[4], [5]. Taking a step further, the chosen model as well
as preprocessing steps can be considered as hyperparameters
[6]. Then, hyperparameter optimization includes also model
and preprocessing selection. Hence, automatic hyperparameter
optimization has become an interesting topic for researchers.
Sequential model-based optimization (SMBO) [7], originally a
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framework for black-box optimization, has been successfully
applied for hyperparameter optimization [5] and is the current
state of the art. SMBO is based on a surrogate model that
approximates the response function of a data set. The response
function maps a hyperparameter configuration and a data set
to the evaluation measure on a hold-out data set. Then, se-
quentially, possibly interesting hyperparameter configurations
are evaluated and the newly acquired knowledge can be used
for further hyperparameter configuration acquisitions. Recent
approaches for improving SMBO try to transfer knowledge
from previous tuning processes to the current one. This is
either done using an initialization for SMBO [8], a specific
surrogate model that is learning across experiments [9], [10],
[11] or search space pruning [12].

Recent work tries to transfer knowledge about the hyper-
parameter space from past experiments to a new data set. This
is either done by using surrogate models that consider past
experiments [9], [13], [10] or by using the information on
past experiments to initialize the new search [8], [14], [15].
The motivation behind this approach is that subsets of the
hyperparameter space that are good on few data sets are likely
good candidates for others. While the first approach is limited
to the application in the SMBO framework, the second can be
used for any hyperparameter optimization strategies.

A. Our Contributions

We propose to transfer knowledge of hyperparameter con-
figurations from past experiments to new data sets using an ini-
tialization strategy that can be used for, but is not limited to, the
SMBO framework. We mathematically formalize the problem
of hyperparameter optimization and derive a hyperparameter
optimization loss. Since this meta-loss is yet not differentiable,
we propose to use a differentiable plug-in estimator. Given this
estimator, initial hyperparameter configurations can be learned
by gradient-based optimization techniques that minimize the
meta-loss. In contrast to existing initialization strategies, our
strategy is neither limited to hyperparameter configurations
that have been evaluated on previous data sets nor does it de-
pend on meta-features. Additionally, we can show that a direct
optimization for the right loss leads to better initializations and
ultimately to an accelerated hyperparameter optimization.

II. RELATED WORK

Initializing hyperparameter optimization through meta-
learning has been proven to be effective [8], [14], [15]. Reif et
al. [15] suggest to choose those hyperparameter configurations



for a new data set that were best on a similar data set
in the context of evolutionary parameter optimization. Here,
the similarity was defined through the distance among meta-
features, descriptive data set features. Recently, Feurer et al.
[8] followed their lead and proposed the same initialization for
sequential model-based optimization (SMBO), the current state
of the art hyperparameter optimization framework. In compar-
ison, we propose to learn the optimal initial hyperparameter
configurations. Our method is not limited to hyperparameter
configurations that have been tried in past experiments such
as the state of the art and does not depend on meta-features.

Recently, a further way of transferring knowledge from
past experiments to a new experiment was proposed that
is limited to the application in the SMBO framework. The
surrogate model, the component in the SMBO framework that
tries to predict the performance for a specific hyperparameter
configuration on a data set, is not learned on knowledge of
the new data set only but additionally on knowledge from
experiments on other data sets [9], [13], [10], [11]. This work is
related but orthogonal to our work. It can benefit from a good
initialization and is no replacement for a good initialization
strategy.

III. BACKGROUND

In this section the hyperparameter optimization problem is
formally defined. For the sake of completeness, the sequen-
tial model-based optimization framework and the concept of
Gaussian processes are presented.

A. Hyperparameter Optimization Problem Setup

A machine learning algorithm Ay is a mapping Ax :
D — M where D is the set of all data sets, M is the
space of all models and A € A is the chosen hyperparameter
configuration with A = A; x...x Ap being the P-dimensional
hyperparameter space. The learning algorithm estimates a
model My € M that minimizes a regularized loss function
L (e.g. misclassification rate):

Ax (D(tmm)) := arg min £ (M)\, D(tm’i")> + R (Mx,A).
MxeM 0

Then, the task of hyperparameter optimization is to find the
optimal hyperparameter configuration A* using a validation set
ie.

A" = arg min £ (AA (D(”‘”")) ,D(”a”d)). @)

=:fp(A)

For demonstration purposes, in the remaining sections we
consider the problem of tuning the hyperparameters of a
classifier. Thus, f will be the misclassification rate. This is no
limitation but shall help the reader to understand the concepts
at a concrete example.

B. Sequential Model-based Optimization

Naive hyperparameter optimization techniques such as grid
search or random search [1] are becoming more and more
expensive. This has several reasons. For one thing data sets
are getting larger, for another thing models are getting more
complex and have high-dimensional hyperparameter spaces

(e.g. Deep Belief Networks [16] and Convolutional Neural
Networks [17]). Sequential model-based optimization (SMBO)
[7] was proposed as a black-box optimization framework.
The idea is to replace the expensive-to-evaluate function f
to minimize with a cheap-to-evaluate surrogate function ¥
that approximates f. An acquisition function (e.g. expected
improvement [7]) is used to tackle the exploitation-exploration
dilemma. Candidate points of the search space A are evaluated
and sequentially chosen and f is optimized. In our scenario,
evaluating f is equivalent to learning a machine learning
algorithm on some training data for a given hyperparameter
configuration and estimate the model’s performance on a hold-
out data set.

Algorithm 1 outlines the SMBO framework. The obser-
vation history H is either the empty set in cases where no
knowledge from past experiments is used [2], [18], [5] or
contains information gathered in past experiments on other
data sets [9], [13], [10]. The SMBO process can be initialized,
usually by applying meta-knowledge [8]. In each iteration, the
surrogate model ¥ is fitted to the instances in the observation
history H. In theory, ¥ can be any regression model but
since the acquisition function a depends on the prediction
and the uncertainty about the prediction, common choices
for the surrogate model are Gaussian processes [9], [5], [13],
[10] or ensembles such as random forests or neural networks
[18], [11]. The candidate point that maximizes the acquisition
function is chosen as the next candidate to evaluate. A common
choice for the acquisition function is the expected improvement
[7]. Further acquisition functions are the probability of im-
provement [7], the conditional entropy of the minimizer [19]
or a multi-armed bandit based criterion [20]. The evaluated
candidate is finally added to the set of observations. After T-
many SMBO iterations, the best currently found hyperparam-
eter configuration is returned.

Algorithm 1 Sequential Model-based Optimization

Input: Hyperparameter space A, observation history #, num-
ber of iterations 7', acquisition function a, surrogate
model ¥, initial hyperparameter configurations A; =
{1, AL}

Output: Best hyperparameter configuration found.

1: for i =1to I do
2:  Evaluate f (\;) (See Eq. (2))

He HU{(A, f (A)

cfort=I+1toT do

Fit ¥ to H

A < argmaxy, cp a (A, W)

Evaluate f ()

H—HU{(A f (M)}

return arg min - r(x=))en f (")

0 e R W

C. Gaussian Processes

Gaussian processes [21] are a conventional prediction
model for state of the art hyperparameter selection strategies
[9], [5], [13], [10]. In this work, they are not only used to be
the surrogate model for the new, unknown data set but also for
the training data sets. Thus, for the sake of completeness, we
recapture that definition.



Given a training data set D = {(A;, f;), ¢ = 1: N} where
fi == f(X\;) and \; € RP. We want to predict f, of a testing
data set A, of size N, x P. Then, f and £, are jointly Gaussian

distributed
f K K.
(f)-xf(er &) o

where K, := K + aQIN, K := x(A,A), o, is a noise
hyperparameter, Iy € "RNXN the identity matrix and £ :
R x R’ — R a kernel function. Furthermore, K, :=
k(A AL) € RN and K., = k(A A,) € RNV
The predicted probability distribution conditioned on previous
observations f of a single instance A, simplifies to
p(f*|A*;A7f) =N

(felkIK, ' b — KK k,) . (4)

The predicted mean is referred to as f .

1) Efficient Computations: The most expensive step in
training a Gaussian process is the inversion of the kernel
matrix. In the SMBO framework an update of the Gaussian
process is needed after each iteration and a complete retraining
is inefficient. A common trick to decrease the running time
for the update step from O (N d) to O (N 2) for a symmetric
kernel function is to decompose the kernel matrix using the
Cholesky decomposition K, = LLT. Then, the predicted
probability distribution for a single instance A, is

p(fel A, A F) =N (filkla, ke —vTV) 5)
with @ = LT\ (L \ f) and v = L\ k, where \ is the operator
for solving an equation system. If a new instance (A, f.) is
added, the triangular matrix L is updated via

Lnew = ( 111;“ Z ) (6)

where 1 =L\ k. and L. = /5 (A, A.) — ]I
can be recomputed as described above.

+ 05. Now «

IV. LEARNING INITIALIZATIONS

In this paper, the task of initializing hyperparameter op-
timization strategies is generalized and a novel approach
to choose initial hyperparameter configurations is proposed.
Instead of choosing from hyperparameter configurations that
have been best on previous data sets [8], [14], we directly
learn hyperparameter configurations and thus are not limited
to hyperparameter configurations that have been evaluated
on previous data sets. The idea is to initialize the initial
sequence of hyperparameter configurations with promising
configurations and further improve them by minimizing the
proposed hyperparameter loss. Since this loss is differentiable,
the initial sequence of hyperparameter configurations can be
learned with gradient-based optimization techniques such as
stochastic gradient descent. This loss is derived by formally
expressing a useful evaluation measure for hyperparameter
optimization in general.

A. Meta-Notation

In the following, the prefix meta is used to distinguish be-
tween the different learning problems. The traditional learning
problem is to learn some parameters 8 on a given data set
containing instances with predictors. For the hyperparameter
optimization problem one can create meta-data sets containing
meta-instances with meta-predictors. A meta-data set con-
tains meta-instances ((A;, mp), fp (A;)) where fp (\;) is the
target and (A;,mp) are the meta-predictors with data set-
dependent meta-features mp. A meta-data set can contain
meta-instances from more than one data set.

In our setting, the hyperparameter response function fp :
A — R returns the misclassification rate after training a spe-
cific classifier on a specific data set D using the hyperparam-
eter configuration A € A. The task is to find the best I initial
hyperparameter configurations such that the hyperparameter
optimization, that is limited to 7' evaluations, will find the
best hyperparameter configuration for an unknown, new data
set D,,..,. To achieve this, meta-instances for other data sets
D € D are given. We denote the final initial hyperparameter
configurations by Aj. Let Ap be the sequence of the T
evaluated hyperparameter configurations on fp

new *

B. Evaluation Measure for Hyperparameter Optimization

First, a general evaluation measure for hyperparameter
optimization is proposed. Then, we discuss a loss function
for initialization techniques for hyperparameter optimization.
Verbally, a set of T hyperparameter configurations A%, C A is
sought that minimizes the difference between the global mini-
mum of fp and the best chosen hyperparameter configuration
A, l.e.

A = argmin min fp (X) — 3", |Ar| = 7

ArCA AEAT
It is important to notice that only the best hyperparameter con-
figuration is of importance. The final evaluation measure for
a given data set D and a set of hyperparameter configurations
Ar is the distance to the global minimum (DTM) (Equation

(8). |
D)= min fo(\) = f5" @)

To compute the DTM for more than one data set, it is not
sufficient to just average the DTM of each data set. The
misclassification rate has different scales on different data sets
which leads to unequal consideration of the errors done on
each data set. The scaled average DTM defined in Equation
(9) is a simple solution to this problem. By scaling the
misclassification rate per data set to [0,1], the evaluation
measure will be 0 for the optimal solution and 1 for the worst
solution. Additionally, every data set equally contributes to the
measure.

DTM (Ar,

. fmzn
ADTM (A —_ =

( T’ |D| Z AGA f’rmu fgnn (9)
This kind of scaling was already proposed by Yogatama and
Mann [10] to overcome the problem of different scales on
different data sets. We want to highlight that the true scaling
can only be done precisely if the true maximum and minimum
is known. This information is used only by hindsight to
evaluate the performance in the experiments.



For notational purposes, whenever f is used in the follow-
ing, the approximated scaled version of it is intended. This
approximation is computed by using the largest and smallest
value that has been seen as an approximation for the maximum
and minimum, respectively.

C. A Loss for Initializing the Hyperparameter Optimization

In the last section, the evaluation measure for hyperparam-
eter optimization in general is formalized. A good initialization
should support a faster convergence of the hyperparameter
search such that the evaluation measure is minimal after 7'
steps. Although, this cannot necessarily be achieved by mini-
mizing the same measure within the [ initialization iterations,
we use this loss as a proxy and optimize the initial sequence
of hyperparameter configurations for the same evaluation mea-
sure. Thus, the meta-loss in Equation (10) is minimized.

L(A;,D m| Z ;ngnI fo (A (10)

D. Differentiable Meta-Loss

The goal in this work is to learn a set of [ initial hyper-
parameter configurations that are not limited to the candidates
evaluated on previous data sets. This sequence is learned by
minimizing the meta-loss defined in Equation (10).

Obviously, this loss is not differentiable. The minimum
function is a non-differentiable function and the function fp is
only partially observed. The minimum function can be approx-
imated by the differentiable softmin function o : R™ — R™ as
defined in Equation (11). We choose 8 = —100 as proposed in
[22] such that Z ~ 1 X0 (x), is very close to the true minimum
min {x1,...,X;

eBxi
m_Gx.
Ej:l e

The function fp is approximated by a differentiable plug-in
estimator or surrogate model fp. This can be any differentiable
regression model that is able to learn from few observations
on D and generalize to unseen meta-instances. Thus, the final,
differentiable meta-loss is given in Equation (12).

|D‘ > ZaDZfD (12)

DeD =1

U((xl,...,xm)T)i:: 11

L(Ar,D

where for notational convenience, the following notation is
used in the remainder of the paper,

eBIp(A)

P — 13
7D, ST eBio() (13)

E. Gradients for the Meta-Loss

In order to apply a gradient-based learning algorithm
that minimizes the meta-loss the gradients for this loss with
respect to the initial hyperparameter configurations need to be

estimated.
0
—~—L(A;,D) = opifp (A (14)
N 5)\14 2] [;,;

=y 2 v (aAlJ “l))

DeD

: (5 (1—0py) fo (N) + 1)

Hyperparameter response function are highly non-linear func-
tions. Hence, our plug-in estimator needs to be able to model
this property. Gaussian processes have proven to be a good
surrogate model for the meta-testing data, hence we decided
to also use it as a surrogate model for each training data set
D. Hence, using the notation from Section III-C, the derivative
for this specific prediction model is

o o
a/\IJE(A”> D|Zapl<aDa>\ kp ) (15)

DeD

. (ﬂ (1 — UD,l) le)’*aD + 1)

F. Learning Algorithm

After deriving the gradients, the final learning algorithm is
presented in Algorithm 2. First, a surrogate model for each
training data set is learned. Then, some initial values for
A1,..., A7 are chosen. Instead of using a more sophisticated
initialization step such as k-means, a relatively simple strategy
is used. A subset containing I of all |D| training data sets are
chosen at random and the best hyperparameter configurations
for these data sets are used as initial values. Afterwards, the
initial solution is iteratively improved by updating the hy-
perparameter configurations into the negative direction of the
gradient weighted by the learning rate 7. For our experiments
we identified 7 = 1073 and E = 10% epochs as useful values
for our problem.

Algorithm 2 Learning Hyperparameter Optimization Initial-
ization
Input: Meta-training set D, number of initial hyperparameter
configurations I, number of epochs E, meta-learn rate 7.
Output: Optimal set of hyperparameter configurations for
initialization.
1: for D € D do
2 Train fp (A.) = k5 ,ap on observed meta-instances
(Ais fD (A)).
3. Initialize A; = {A1, ..., Ar} with the best hyperparameter
configurations of I data sets D € D chosen at random.
4: for e =1 to E do

5. Precompute fp(A\;) and op for all ¢ = 1...7 and
D eD.

6: fori=1to I do

7: for j =1to P do

8: )\i,j — )\i,j — nﬁﬁ (A],D)

9: return A; "

G. Adaptive Data Set Weights

So far, the influence of each training data set for finding
the optimal initial hyperparameter configurations is equal.



Naturally, it is expected that one data set may contain more
information than others, hence, we propose to weight the
influence of each data set with a cost function that depends
on one training data set D and the new data set D, for
which the optimal hyperparameter configuration is sought.

1 ! .
L(ArD) = > (D, Dpew) > opifp(N)  (16)
1

DeD i=

The cost function ¢ should be 1 if D is similar to D,,.,, and
close to O if they are completely different. This cost function
may depend on meta-features [8], [15] but we propose to
iteratively reupdate and recompute the initial hyperparameter
configurations depending on the outcome of already performed
evaluations fp, .. (A1),...,[D,.. (M), t < I. The assump-
tion is that the [ initial hyperparameter configurations are
not evaluated in parallel but sequentially. Then, at time step
t + 1, it is sufficient to minimize the loss in Equation (16) by
keeping the already evaluated hyperparameter configurations
Ay = {A1,..., A} fixed and find A;y; that minimizes the
loss. The weighting of the data sets is updated using the
approximated Kendall Tau Rank Correlation Coefficient [23]
defined by

Z)\ A2€A S (Al’AZ’D’Dnew)
¢ D’D"€71J7A, = 1,72 t
| ! |A¢| (JA¢] — 1)

an
5 Ay A2, D, Dnew) = X (f0 (A1) > fo (M)
OfDpew A1) > [, (R2))

where the exclusive-or operator is denoted by & and ¥ (-) is
1 if the logical expression is true and O otherwise. For the
new data set D,.,, the true values for all hyperparameter
configurations in A; are given. This is not the case for the
training data set D and thus this value is approximated using

fp-

H. Comparison to State of the Art

The state of the art strategy for initializing hyperparameter
optimization [8], [15] can be understood as a special case of
our general loss function in Equation (16). They optimize for
the same loss but use a different cost function. While we are
using a constant cost function in Section IV-F or an adaptive
function in Section IV-G, they propose to consider only the
data sets that are nearest regarding a distance function J over
the meta-features of the data set. Formally, they use

1 if D is among the I nearest
data sets regarding § to Dy . (18)
0 otherwise

¢(D, Dpew) =

To optimize the loss function with respect to this cost function,
no difficult optimization technique is needed. Simply taking the
best hyperparameter configurations of the I nearest data sets
to D, 1s sufficient.

This choice of initial hyperparameter configurations is
limited to the hyperparameter configurations that have been
investigated on the training data sets. We will show that,
if this constraint is not given, better initial hyperparameter
configurations can be found.

V. EXPERIMENTAL EVALUATION
A. Tuning Strategies

We want to give a short introduction to all tuning strategies
considered in the experiments. Both, strategies that do not use
knowledge from previous experiments and those that use it, are
considered. All strategies are based on the SMBO framework
and use the expected improvement as the acquisition function.
The only difference is the surrogate model and whether knowl-
edge from other data sets is transferred or not.

Independent Gaussian Process (GP): This tuning strat-
egy uses a Gaussian process with squared-exponential kernel
with automatic relevance determination (SE-ARD) as a surro-
gate model. It only uses knowledge from the current data set
and is not using any knowledge from previous experiments.

Independent Random Forest (RF): Next to Gaussian
processes, random forests are the most widely used surrogate
model [18] and are used in the experiments. Like the indepen-
dent Gaussian process, the RF does not use any knowledge
from previous experiments.

Surrogate Collaborative Tuning (SCoT): SCoT [9] uses
a Gaussian process with SE-ARD kernel and is trained on
previous and the current experiment. Instead of using the
original labels, an SVMRank is learned on the data set and
its predictions are used as the labels instead. Bardenet et al.
[9] argue that this overcomes the problem of having data sets
with different scales of labels. In the original work, it was
proposed to use an RBF kernel for SVMRank. For reasons of
computational complexity we follow the lead of Yogatama and
Mann [10] and use a linear kernel instead.

Gaussian Process with MKL (MKLGP): Similarly to
Bardenet et al. [9], Yogatama and Mann [10] propose to
use a Gaussian process as a surrogate model for the SMBO
framework. Instead of using SVMRank to deal with the
different scales, they are adapting the mean of the Gaussian
process, accordingly. Additionally, they are using a specific
kernel, a linear combination of an SE-ARD kernel and a kernel
modeling the distance between data sets.

Kernel parameters are learned by maximizing the marginal
likelihood on the meta-training set [21]. Hyperparameters of
the tuning strategies are optimized in a leave-one-out cross-
validation on the meta-training set.

The results reported in Figures 1 to 6 show the averages of
ten repetitions of a leave-one-out cross-validation on the data
sets. Thus, each of the 50 data sets is once the new data sets
while all others are part of the meta-training set.

B. Initialization Strategies

Following initialization strategies will be considered in our
experiments.

a) No Initialization (No Init): No initialization is used.
This is equivalent to a random initialization for all surrogate
models that do not transfer knowledge from previous experi-
ments. Thus, these results were repeated 1,000 times instead
of only 10 times and averaged.



TABLE 1. LIST OF ALL META-FEATURES USED.

Number of Classes

Number of Instances

Log Number of Instances
Number of Features

Log Number of Features

Data Set Dimensionality

Log Data Set Dimensionality
Inverse Data Set Dimensionality
Log Inverse Data Set Dimensionality
Class Cross Entropy

Class Probability Min

Class Probability Max

Class Probability Mean
Class Probability Standard Deviation
Kurtosis Min

Kurtosis Max

Kurtosis Mean

Kurtosis Standard Deviation
Skewness Min

Skewness Max

Skewness Mean

Skewness Standard Deviation

b) Random Best Initialization (RBI): This initialization
is a very simple initialization. I training data sets from the
set of all training data sets D are chosen uniformly at random.
Then, the best hyperparameter configurations on these data sets
are used for the initialization. Hence, this corresponds to the
initialization used in Algorithm 2.

Nearest Best Initialization (NBI): This is the initializa-
tion strategy proposed by Reif et al. and Feurer et al. [8], [15].
Instead of choosing [ training data sets uniformly at random,
they are chosen with respect to the similarity between the
meta-features listed in Table I. Then, like for RBI, the best
hyperparameter configurations on these data sets are chosen
for initialization.

Learning Initializations (LI): Learning Initializations
is the strategy introduced in Section IV and summarized in
Algorithm 2. Its advantage is that it is directly optimized for
the loss and the selected hyperparameter configurations are not
limited to hyperparameter configurations that were previously
observed in past experiments.

Adaptive Learning Initializations (aLl): Adaptive
Learning Initializations is presented in Section IV-G. It is an
extension to Learning Initializations (LI) that tries to incorpo-
rate the knowledge about the new data set that is sequentially
gathered by re-weighting the influence of each training data
set.

C. Meta-Features

Meta-features are supposed to be discriminative for a data
set and can be estimated without evaluating f. Many surrogate
models [9], [13], [10] and initialization strategies [8], [15]
use them to predict the similarity between data sets. For the
experiments, the meta-features listed in Table I are used. For
an in-depth explanation we refer the reader to [9], [24].

D. Evaluation Metrics

As proposed before, the scaled average distance to the
minimum is used as the evaluation measure.

fo N = f5™"

y 19
fgmm _ fgwn ( )

1 .
ADTM (A7, D) := D Dze;){g\nT

For computational reasons, evaluations of f on the data sets
are precomputed by doing an extensive grid search. Then,
the global minimum and maximum is approximated by using
the smallest and largest value that was found during the grid
search, respectively.

The initial hyperparameter configurations found by Learn-
ing Initialization will not be on this grid. To avoid the time-
consuming evaluation for the exact hyperparameter configura-
tions, the hyperparameter configurations were chosen that are
closest to the one proposed by Learning Initializations.

E. Meta-Data Sets

For creating the two meta-data sets, 50 classification data
sets are used. In case there were already train/test splits, all
instances were merged, shuffled and split into 80% train and
20% test. Then, two different classifiers were used to create
the meta-instances for two meta-data sets: a support vector
machine (SVM) [25] and AdaBoost [26].

We trained the SVM using three different kernels (linear,
polynomial and Gaussian) and estimated the labels of the
meta-instances by evaluating the trained model on the test
split. The hyperparameter space dimension is six. Three
dimensions for binary features that indicate which kernel
was chosen, one for the trade-off parameter C, one for
the degree of the polynomial kernel d and the width v of
the Gaussian kernel. If the hyperparameter is not involved,
e.g. the degree if we are using the linear kernel, it was
set to 0. The test misclassification rate was precomputed
onagrid C € {27°,...,2°}, d € {2,...,10} and 7 €
{10*4,10*3,0.01,0.05,0.1,0.5,1,2,5,10,20,50,102,103}
resulting in 288 meta-instances per data set.

The AdaBoost meta data set was created as proposed by
Bardenet et al. [9]. Decision products are chosen as weak
learners such that the number of hyperparameters is two. The
number of iterations ¢ and the number of product terms p. The
misclassification rate was precomputed on a grid with values
i € {2,5,10,20,50,100,200,500,1000, 2000, 5000, 10000}
and p € {2,3,4,5,7,10,15,20,30} resulting in 108 meta-
instances per data set.

Both meta-data sets are extended by the meta-features
listed in Table I. To show that being able to choose hyper-
parameter configurations that have not been seen on the meta-
training set yields an improvement, a coarse grid was used
for the meta-training data set and the full, fine grid for the
meta-testing data set.

FE Experiments

Two different experiments are conducted. First, state of the
art initialization strategies are compared with respect to the
ADTM after [ initial hyperparameter configurations. Second,
the long term effect on the hyperparameter optimization is
compared. Even though the initial hyperparameter configura-
tions lead to good results after I steps, the ultimate aim is to
have good results at the end of the hyperparameter optimization
after T iterations.

1) Comparison to other Initialization Strategies: The
ADTM on the two meta-data set for / = 1...10 for different
initialization strategies is shown in Figure 1. This experiment
analyzes 1) the performance of initialization strategies versus
surrogate models that are transferring knowledge from previ-
ous experiments (SCoT and MKLGP), ii) the legitimacy of
the use of meta-features as a measure for similarity between
data sets and iii) compares our proposed initialization strategies
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Development of the ADTM for increasing number of initial hyperparameter configurations on both meta-data sets. Our proposed strategies LI and aLI

are outperforming the state of the art initialization strategies (RBI/NBI) and state of the art surrogate models that transfer knowledge from previous experiments

(SCoT and MKLGP).

to the current state of the art. One may argue, that in the
case that a surrogate model is used to transfer knowledge
from previous experiments, no further initialization strategy
is needed. The experiments do not indicate that this is true.
While we acknowledge that at least SCoT provides a moderate
initialization sequence, it is still not able to beat the best
initialization strategy. A direct comparison between RBI and
NBI indicates that meta-features can be used to estimate the
similarity between data sets. The use of meta-features in
NBI leads to an improved initialization compared to RBI.
Finally, our proposed initialization strategy LI provides a very
good initialization for I = 1 and is consistently the best
initialization. Its variation alLI does not seem to provide better
results.

2) Comparison with Respect to the Long Term Effect: The
aim of an initialization strategy is to accelerate the hyperpa-
rameter search and convergence to the best or at least a good
hyperparameter configuration. Thus, not the performance at the
end of the initialization is essential but the further convergence.
Therefore, a further experiment was conducted. The SMBO
framework was initialized with five hyperparameter config-
urations using the respective initialization strategy and then
was continued using the SMBO procedure. All initialization
strategies are also compared to the case where no initialization
was used. The experiments are conducted for all surrogate
models presented in Section V-A.

We expect that transferring knowledge from previous ex-
periments has more impact if this is not done by the surrogate
model. This can be seen in Figure 2. Comparing Figure 1
with Figure 2 on the SVM meta-data set, one can see that all
initialization strategies provide better results for the first initial
value than the GP without initialization does after six SMBO
iterations. The results in Figure 2 and 3 are of special interest
because the effect of the knowledge transfer is not distorted by
a surrogate model that also transfers knowledge. Our proposed
strategy LI outperforms any other initialization strategy on both
meta-data sets and for both surrogate models. Again, alLI does
not provide better results than LI. It is interesting to notice
that RBI provides similar results to NBIL.

The results in Figure 4 and 5 demonstrate the impact of
an initialization strategy on a surrogate model that transfers

already knowledge from previous experiments. Obviously, the
gap between no initialization and some specific initialization
shrinks. SCoT without initialization achieves similar results as
SCoT with RBI or NBI but SCoT with LI consistently achieves
the best results. Account should be taken of the fact that the
result lines will compulsory get closer with growing number
of SMBO iterations and will meet after just enough iterations.
For the MKLGP the results are similar, but here NBI is able
to outperform LI on the SVM meta-data set.

So far we argued carefully that, even though surrogate
models that are transferring knowledge across data sets exist,
there is still need for an initialization strategy. Moreover, one
can question: Are these surrogate models necessary if a good
initialization strategy is used? Surrogate models that learn
across data sets have three big disadvantages:

1)  The run-time for updating the surrogate model after
each SMBO iteration is by a factor of O (|D\2>

higher than a surrogate model that is only trained on
the current data set (assuming the surrogate model
is based on a GP which is the case for SCoT and
MKLGP).

2) A specific surrogate model is needed and no out of the
box machine learning model such as GP or RF can be
used. Additionally, hand-crafted, problem-dependent
meta-features need to be used.

3) These surrogate models are specific for the SMBO
framework and cannot be used for other optimiza-
tion frameworks such as the initialization strategy.
Furthermore, an initialization strategy can be learned
by a single researcher and then shared with other
researchers and practitioners while the specific sur-
rogate model always also includes sharing the meta-
data.

These disadvantages may be tolerable if there is an improve-
ment in terms of hyperparameter optimization acceleration.
Figure 6 compares both surrogate models that do not use
meta-features and do not transfer knowledge (GP and RF)
to those that do (SCoT and MKLGP). All four strategies are
initialized with five hyperparameter configurations by LI since
this provided better results for all strategies. As the reader can
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see, the surrogate models that learn across data sets do not
provide better results.

G. Experimental Conclusion

Concluding this section, our proposed initialization strategy
LI is able to provide better initial hyperparameter configura-
tions than the state of the art. Furthermore, it demonstrates
better results with respect to the long term effect. Initializa-
tion strategies for optimization strategies that do not transfer
knowledge from other experiments gain most from the ini-
tialization. But also for surrogate models that already transfer
the knowledge an improvement is recognizable. Furthermore,
the current state of the art surrogate models do not seem to
be necessary if a good initialization strategy is chosen. The
proposed adaptive re-weighting of the data set weights (alLl)
has some potential but the re-weighting as proposed by us does
not show better results than a constant weighting.

VI. CONCLUSION

A meta-loss for hyperparameter optimization was derived
that depends on the hyperparameter response function of
previously seen data sets. Since the response function is
unknown and only few observations are given, the meta-loss
is not differentiable. By approximating the response function
with a differentiable plug-in estimator, the meta-loss becomes
differentiable. That in turn enabled us to learn initial hyper-
parameter configurations that minimize the meta-loss. These
learned initial hyperparameter configurations are not limited
to configurations that have been seen before.

Our initialization learning algorithm was compared to state
of the art initialization strategies and provided better initial
values and furthermore has better long term effects on the
hyperparameter optimization. Finally, a generalized meta-loss
was presented that allows to (dynamically) weight the influence
of each data set and we have shown that the current state of
the art initialization strategies are optimized for a special case
of this general meta-loss.
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