
Hyperparameter Optimization Machines
Martin Wistuba

Information Systems and
Machine Learning Lab

University of Hildesheim
Universitätsplatz 1,
31141 Hildesheim,

Germany
wistuba@ismll.

uni-hildesheim.de

Nicolas Schilling
Information Systems and
Machine Learning Lab

University of Hildesheim
Universitätsplatz 1,
31141 Hildesheim,

Germany
schilling@ismll.

uni-hildesheim.de

Lars Schmidt-Thieme
Information Systems and
Machine Learning Lab

University of Hildesheim
Universitätsplatz 1,
31141 Hildesheim,

Germany
schmidt-thieme@ismll.

uni-hildesheim.de

Abstract—Algorithm selection and hyperparameter tuning are
omnipresent problems for researchers and practitioners. Hence, it
is not surprising that the efforts in automatizing this process using
various meta-learning approaches have been increased. Sequen-
tial model-based optimization (SMBO) is one of the most popular
frameworks for finding optimal hyperparameter configurations.
Originally designed for black-box optimization, researchers have
contributed different meta-learning approaches to speed up the
optimization process. We create a generalized framework of
SMBO and its recent additions which gives access to adaptive
hyperparameter transfer learning with simple surrogates (AHT),
a new class of hyperparameter optimization strategies. AHT
provides less time-overhead for the optimization process by
replacing time- and space-consuming transfer surrogate models
with simple surrogates that employ adaptive transfer learning.
In an empirical comparison on two different meta-data sets,
we can show that AHT outperforms various instances of the
SMBO framework in the scenarios of hyperparameter tuning
and algorithm selection.

I. INTRODUCTION

Algorithm selection and hyperparameter tuning are om-
nipresent problems for researchers and practitioners. The se-
lection of an algorithm for a specific problem and furthermore
the respective hyperparameter configuration has a vital impact
on the quality of the final predictions. The most conventional
method for selecting the algorithm is usually based on the
practitioner’s past experience, the hyperparameters are then
usually tuned using a combination of manual search and
grid or random search. This has two drawbacks. First, in-
experienced researchers will have difficulties in choosing the
right combination of algorithm and hyperparameter configu-
ration. Second, finding the best hyperparameter configuration
by using a grid search will be a time-consuming task. For
bigger data sets and more advanced algorithms, only few
hyperparameter evaluations are feasible with respect to the
whole search space.

Recent research proposes automatic algorithm selection and
hyperparameter tuning as the solution for these problems. It
has been shown that this task can be solved in less compu-
tational time and additionally finds hyperparameter configura-
tions that are better than those found by human domain experts
[2], [16]. Algorithm selection is a well-studied problem that

is not limited to machine learning but also finds application in
artificial intelligence and operations research [20]. Recently, a
program for combined algorithm selection and hyperparameter
tuning was published for the well-known data mining tool
WEKA [23]. The current direction of research tries to mimic
the tuning behavior of human experts. The information of past
tuning processes is transferred to current tuning processes ei-
ther by initializing the tuning process by trying configurations
that performed well on previous experiments [18], [8], [25]
or by using specific machine learning models that predict the
performance of an algorithm and hyperparameter configuration
on the current problem [1], [21], [26], [19].

Our contributions in this work are twofold: We propose
hyperparameter optimization machines (HOM), a hyperpa-
rameter tuning framework that is a generalization of SMBO
and its recent meta-learning additions. Second, we propose a
novel instance of HOM. Its advantage is less space and time
requirements in comparison to transfer surrogate models and
adaptivity within the first trials in comparison to initialization
techniques. In extensive experiments on two different meta-
data sets created from 50 data sets, our proposed approach is
able to outperform all seven state of the art hyperparameter
tuning methods we compared to.

II. RELATED WORK

Sequential model-based optimization (SMBO) [14] was
proposed to be used for hyperparameter optimization and has
proven to be effective [2]. Different surrogate models were
proposed [13] as well as the use of meta-knowledge. Some
work proposes to make use of meta-knowledge with initializa-
tions [8], [25], others propose transfer surrogate models [1],
[21], [26], [19]. Furthermore, SMBO has also been applied
for combined algorithm and hyperparameter selection [23].
In this work we want to summarize all these contributions
within the hyperparameter optimization machine (HOM). This
generalization allows a new class of tuning strategies which
will be investigated in this work.

Besides SMBO, hyperparameter optimization strategies
based on optimization techniques from artificial intelligence
such as tabu search [4], particle swarm optimization [10]

and evolutionary algorithms [9] exist. Bandit optimization
techniques were recently proposed for automatic machine
learning [12]. There is plenty of work focusing on algorithm
selection [20], some work tries to adapt this to hyperparameter
tuning as well [15].

III. HYPERPARAMETER OPTIMIZATION PROBLEM

A machine learning algorithm Aλ can be understood as
a mapping Aλ : D → M where D is the set of all data
sets, M is the space of all models and λ ∈ Λ is the chosen
hyperparameter configuration with Λ = Λ1 × . . . × Λp being
the p-dimensional hyperparameter space of algorithm A. The
learning algorithm estimates a model Mλ ∈M that minimizes
a loss function L (e.g. misclassification rate) with its model
regularization term R:

Aλ

(
D(train)

)
:= arg min

Mλ∈M
L
(
Mλ, D

(train)
)
+R (Mλ,λ) .

(1)
Then, the task of hyperparameter optimization is to find the
optimal hyperparameter configuration λ∗ using a validation
set i.e.

λ∗ := arg min
λ∈Λ

L
(
Aλ

(
D(train)

)
, D(valid)

)
=: fD (λ) . (2)

For demonstration purposes, in the remaining sections we
consider the problem of tuning the hyperparameters of a
classifier. Thus, the hyperparameter response function fD will
be the misclassification rate. This is no limitation but shall help
the reader to understand the concepts at a concrete example.

Algorithm 1 Hyperparameter Optimization Machines
Input: Hyperparameter space Λ, observation historyH, trans-

fer function T, acquisition function a, surrogate model Ψ ,
trade-off parameter α, hyperparameter response function
f to be minimized, total number of HOM iterations T .

Output: Best hyperparameter configuration found.
1: Λ0 ← ∅, fbest ←∞
2: for all t = 1 . . . T do
3: Fit Ψ to H (Update)
4: λ← argminλ′∈Λ (1−αt)T (λ′,Λt−1)

−αta (λ
′, Ψ)

(Predict)

5: Λt ← Λt−1 ∪ {λ}
6: Evaluate f (λ)
7: H ← H∪ {(λ, f (λ))}
8: if f (λ) < fbest then
9: λbest, fbest ← λ, f (λ)

10: return λbest

IV. HYPERPARAMETER OPTIMIZATION MACHINES

Sequential model-based optimization (SMBO) [14] was
originally proposed for black-box optimization. It was de-
signed for finding an optimum of a function f which is
expensive to evaluate. A surrogate model Ψ is used that tries
to approximate f but has the advantage of being less time-
consuming to evaluate. This surrogate model is combined

with an acquisition function a [14] to tackle the exploitation-
exploration dilemma. SMBO has been applied to the prob-
lem of hyperparameter optimization [21] by minimizing the
function fD defined in Equation 2 and has proven to be very
effective. Since then, researchers have adapted and specialized
SMBO for the hyperparameter optimization problem.

A specific property of hyperparameter optimization beyond
mere black-box optimization is that the hyperparameter re-
sponse function of a specific algorithm behaves similar on
similar data sets. Furthermore, some hyperparameter configu-
rations provide decent results on average which are usually
proposed as default hyperparameter configurations. Hence,
information about the data sets and information about previous
experiments can be used by practitioners to find good ini-
tial hyperparameter configurations. This important difference
between arbitrary black-box optimization and hyperparameter
optimization and the fact that meta-knowledge already helped
for other hyperparameter optimization techniques [18], gave
rise to various transfer learning approaches based on initial-
ization [8], [25], transfer surrogate models [1], [19], [22], [26]
and pruning [24] and has empirically proven its usefulness.
Finally, the sequential hyperparameter evaluation was adapted
to be capable of searching in parallel to exploit the hardware
available in our days [21].

For all these reasons, the name sequential model-based
optimization has become outdated and does no longer seem
appropriate in the context of hyperparameter optimization.
Therefore, we want to propose hyperparameter optimization
machines as a generalization of SMBO which covers the recent
contributions. Algorithm 1 outlines our aforementioned gen-
eralization. Like the SMBO, it consists of a surrogate model
Ψ and an acquisition function a. Iteratively, Ψ is updated
using all observations H and then the next hyperparameter
configuration is selected (Line 3 and 4). In contrast to the
state of the art, this is done by using a linear combination of
the acquisition function a and a new component, the transfer
function T. We consider the negative value of the acquisition
function a because a higher value means better values and we
want to minimize the combined term. As will be detailed in the
following, this covers SMBO with initialization as well as our
proposed tuning strategy proposed in Section V. The parameter
α is a meta-hyperparameter that controls the influence of
transferred meta-knowledge and the knowledge gathered about
the new data set so far. A reasonable α is one that is close
to 0 for small t ∈ N and then increases over time to 1. Thus,
meta-knowledge plays a major role for the selection of the first
hyperparameter configurations and becomes irrelevant as soon
as enough knowledge is gathered about the new data set. After
selecting the most promising hyperparameter configuration, it
is evaluated and the result is added to H. This is repeated until
T configurations are evaluated.

A. Relationship between HOM and SMBO

In the last section we introduced hyperparameter optimiza-
tion machines (HOM) with the goal to generalize across the
contributions that have been done to SMBO for hyperparam-

eter optimization. Hence, we will now map most relevant
hyperparameter optimization methods related to the SMBO
framework to HOM.

SMBO itself is obviously a specialization of HOM in the
case that α = 1 such that the transfer function T will not be
considered or for arbitrary α if T is a constant function. In the
following, we will ignore that T can be a constant function and
assume that it somehow reflects the meta-knowledge, meaning
that T (Λt) is lower if Λt ⊂ Λ contains hyperparameter
configurations that performed well in previous experiments
and vice versa. It is important to notice, that HOM is not an
instance of SMBO with a specific acquisition function. The
expression in Line 4 of Algorithm 1 and an acquisition func-
tion have in common that they acquire the next hyperparameter
configuration but the acquisition function of SMBO depends
only on the hyperparameter configuration and its predicted
performance but is independent of the time and previously
selected hyperparameter configurations.

The work that is proposing a specific surrogate model for
SMBO [1], [13], [19], [21], [22], [26] is hence also an instance
of HOM. Choosing an appropriate transfer function, SMBO
with I initialization steps [8], [25] is a special case of HOM
where αt = 0 if t ≤ I and 1 otherwise.

Finally, even random search [3] and grid search can be
considered as an instance of HOM with a very specific
acquisition function and with no need for a surrogate model.

V. ADAPTIVE HYPERPARAMETER TRANSFER LEARNING
WITH SIMPLE SURROGATES

So far two different ways of exploiting meta-knowledge in
the SMBO framework are common. One option is to use an
initialization [8], [25] and combine it with simple surrogate
models, models that are learned only on observations of the
current data set. The advantage in this case is that it does
not need any additional run time during the optimization
process compared to the plain SMBO framework. Otherwise,
the initialization sequence is static and does not consider the
first trials. In contrast, transfer surrogate models [1], [19],
[22], [26] (machine learning models that are learned on the
observations on the current data and on observations of past
experiments on other data sets) adaptively consider the meta-
knowledge but they are costly in terms of space and time.
Finally, applying meta-knowledge by initialization or transfer
surrogate models achieves similar performances [25].

In this section we propose our main contribution, a new
instance of hyperparameter optimization machines which we
call Adaptive Hyperparameter Transfer Learning with Simple
Surrogates (AHT). The idea is to make use of the newly
introduced transfer function T and combine it with simple
surrogates while letting α adopt arbitrary values between 0 and
1. This will lead to a new hyperparameter optimization strategy
that tries to combine the advantages of both, initialization and
transfer surrogate models, and reduce their drawbacks. In the
following sections, we will derive a transfer function T that
tries to minimize a meta-loss and theoretically investigate the

asymptotic space and time requirements compared to simple
and transfer surrogates, respectively.

A. Meta-Loss

Many machine learning problems are solved by learning
parameters of a model by minimizing a predefined loss
function. Analogously, Wistuba et al. proposed a meta-loss
for hyperparameter optimization [25]. This is based on the
idea that the goal is to minimize the distance to the global
minimum fmin

D (DTM) after trying a subset of hyperparameter
configurations ΛT ⊂ Λ:

DTM(ΛT , D) := min
λ∈ΛT

fD (λ)− fmin
D . (3)

The computation of the DTM over a set of data sets should not
be computed by simply averaging all DTMs because the scales
and offsets of the hyperparameter performance of different
data sets can vary much and hence provide unequal influence
of each individual data set. Thus, the average DTM is achieved
by averaging after scaling the hyperparameter performance to
the interval [0, 1]:

ADTM(ΛT ,D) :=
1

|D|
∑
D∈D

min
λ∈ΛT

fD (λ)− fmin
D

fmax
D − fmin

D

. (4)

In the remainder of this paper whenever f is used, the scaled
version of it is meant. We want to highlight that the true
minimum and maximum is unknown and will be approximated
using the extreme values as plug-in estimates.

B. Evaluating Hyperparameter Configurations based on
Meta-Knowledge

So far the evaluation of a hyperparameter configuration
is based on an acquisition function that takes the predicted
value and uncertainty into account. During this selection, meta-
information can be used indirectly with transfer surrogate
models. HOMs allow to introduce our new approach AHT that
uses simple surrogates and still accelerates the optimization
process as well as decreases the needed memory. The use
of meta-knowledge is solely based on the transfer function
T. Then Line 4 of Algorithm 1 combines the knowledge
about the current data set and the knowledge about past
experiments. Yet, it is unclear what properties are required for
a good transfer function. We define two requirements: First,
hyperparameter configurations that performed well on previous
data set should be rated higher than others. Second, with
increasing information about the new data set, the influence of
the meta-information should vanish. The second requirement
can also be achieved by choosing α accordingly but this would
inflate the number of meta-hyperparameters for the HOM
which we want to avoid.

Since our ultimate goal is to minimize the DTM on the
new data set, we use the ADTM on the previous data sets as
a proxy for rating the hyperparameter configurations. Thus,
the transfer function can be derived from Equation 4 and we
define it as

T (λ,Λt−1) :=
1

|D|
∑
D∈D

min
λ′∈Λt−1∪{λ}

fD (λ′) (5)

Test Data

Hyperparameter

Configuration

M
is

c
la

s
s
if
ic

a
ti
o
n
 R

a
te

Train Data 1

Hyperparameter

Configuration

M
is

c
la

s
s
if
ic

a
ti
o
n
 R

a
te

Train Data 2

Hyperparameter

Configuration

M
is

c
la

s
s
if
ic

a
ti
o
n
 R

a
te

Train Data 3

Hyperparameter

Configuration

M
is

c
la

s
s
if
ic

a
ti
o
n
 R

a
te

Surrogate Model (t=2)

Hyperparameter

Configuration

M
is

c
la

s
s
if
ic

a
ti
o
n
 R

a
te

Mean
Std. Dev.
True Value

Hyperparameter Acquisition (t=2)

Hyperparameter

Configuration

Negative Acquisition

Function

Transfer Function

Combined Value

Surrogate Model (t=3)

Hyperparameter

Configuration
M

is
c
la

s
s
if
ic

a
ti
o
n
 R

a
te

Mean
Std. Dev.
True Value

Hyperparameter Acquisition (t=3)

Hyperparameter

Configuration

Negative Acquisition

Function

Transfer Function

Combined Value

Fig. 1. First row: Hyperparameter response surfaces of the current data set where we want to find the best hyperparameter configurations and of three data
sets which have been investigated before (meta-data). Second row: Sequential process of AHT. One can clearly see the positive impact of the transfer function
on the hyperparameter configuration selection in unexplored areas. In all plots: the lower the better.

where Λt−1 is the set of evaluated hyperparameter configu-
rations after t− 1 trials. The hyperparameter configuration λ
that minimizes Equation 5 is that one that has reduced the
misclassification rate the most on previous data sets if the
hyperparameter configurations in Λt−1 have been tried already.

One problem remains. The functions fD are only partially
observed, hence Equation 5 cannot be computed for arbitrary
hyperparameter configurations λ. To achieve this, we replace
fD with plug-in estimators ΨD that are trained on the available
observations of data set D and approximate the true fD. These
observations are part of the meta-data set and hence do not
involve any further evaluations of fD. Similarly, the surrogate
model Ψ is trained only on the observations of the new data
set.

The effect of the transfer function for 0 < αt < 1 will be
twofold. First, it will serve as some kind of soft initialization
where likely good hyperparameters are preferred by taking
into account the little knowledge that has been gathered on the
new data set. Second, it fulfills the criterion that the influence
of the meta-knowledge is no longer used as soon as enough
trials on the new data set have been performed. This will be
achieved by the minimization term in Equation 5 that will
ensure that the transfer function loses ground over time on the
hyperparameter configuration selection decision. The resulting
side effect is that we will choose the same value for all αt.

We will explain and illustrate the impact of our proposed
combination of the acquisition function with the transfer func-
tion in Figure 1. In the first row of Figure 1 the misclassifica-

tion rate of a classifier with a one-dimensional hyperparameter
space for four different data sets are shown. The task is now
to estimate the hyperparameter configuration for the test data
(upper left plot) with smallest error using the information
gathered on the other three data sets.

For illustration purposes we start at t = 2 that means
after already evaluating the model with one hyperparameter
configuration. We are using a Gaussian process as a surrogate
model and expected improvement [14] as acquisition function.
As transfer function we use the function that we derived in
Equation 5. The surrogate model got updated using the single
observation (Figure 1; “Surrogate Model (t=2)”) and the values
of the acquisition function and the transfer function can be
estimated (Figure 1; “Hyperparameter Acquisition (t=2)”). The
standard SMBO is depending only on the acquisition function
(dashed orange line) for selecting the next hyperparameter
configuration and not directly on the meta-knowledge. Hence,
it would choose a hyperparameter configuration at the left
border of the hyperparameter search space. Computing the
transfer function (solid blue line), we can see that the transfer
function has lower values in which we can expect lower
(that means better) function values. Even though data sets
1 and 2 indicate that the right region of the hyperparameter
space is good for some data, the transfer function has high
values here. The reason for this is that we already evaluated
a hyperparameter configuration in that region such that the
improvement in these regions likely is small.

Finally, the addition of the transfer function to the Hyperpa-

TABLE I
COMPARISON OF TIME AND SPACE REQUIREMENTS. THE MEMORY REQUIREMENTS OF GP WITH TRANSFER FUNCTION IS ONLY LINEAR IN THE NUMBER

OF DATA SETS d AND THE UPDATE TIME IS INDEPENDENT OF THE SIZE OF THE META-DATA SET ASSUMING THAT IN EACH PREVIOUS EXPERIMENT n
OBSERVATIONS ARE GATHERED AND ON THE NEW DATA SET t ARE GATHERED SO FAR.

Simple GP [21], [8], [25] Transfer GP [1], [22], [26] GP with transfer function (this work)
Training (offline) - O

(
d3n3

)
O

(
dn3

)
Update (online) O

(
t2
)

O
(
t2 + d2n2 + dnt

)
O

(
t2
)

Prediction (online) O (t) O (t+ dn) O (t+ dn)
Space (online) O

(
t2
)

O
(
t2 + d2n2 + dnt

)
O

(
t2 + dn2

)

rameter Optimization Machine framework allows us not only
to find a balance between exploration and exploitation on the
current data set but also on the usage of meta-knowledge by
adding some weight on regions that have been good on other
data sets (dotted green line). Based on the smallest value of
the combination of acquisition and transfer function, the next
hyperparameter configuration is chosen. Again the surrogate
model is updated and the next hyperparameter configuration
can be estimated. In this simple example with low-dimensional
hyperparameter configurations and little meta-data, one can
see already now that the transfer function loses influence over
time. As explained before, this is a wanted effect because at
some point the knowledge on the current data set is sufficient.

This simple example motivates the improvement of
AHT over plain SMBO without meta-knowledge. If meta-
knowledge is used there are so far two options. One is to
use initializations. Compared to AHT this will lead to a fixed
number of initial trials no matter, if we already know that this
is a bad hyperparameter region or not. AHT will not make this
mistake since it is using the information of previous trials. The
advantage of AHT over transfer surrogates cannot be shown in
a simple one-dimensional example but we will try to explain it
here and prove it empirically in the course of the paper. As we
have seen in the example, AHT is using the meta-knowledge
in a way that the meta-knowledge is losing its influence over
time. Transfer surrogates can handle this only to a certain
degree. This will be an important issue for transfer surrogates,
if they are applied to a data set where hyperparameters behave
completely different to the majority of data sets in the meta-
data set. At any point of time the transfer surrogate is more
biased to hyperparameter configurations that have been good
on the meta-data set while AHT will at some point ignore the
meta-data completely and rely on the data collected of the new
data set only.

C. Space and Time Requirements

In the following we discuss the time and space complexity
of the three different approaches of using meta-knowledge
in HOM: 1) initialization combined with a simple surrogate,
2) transfer surrogate model and 3) adaptive hyperparameter
transfer learning with simple surrogates (AHT; Section V).
This discussion is led for the case that the surrogate model
is based on a Gaussian process (GP), the most widespread
approach [1], [22], [26].

Assuming the meta-knowledge of d data sets is available
and for each of these data sets, for simplicity, n observations

are available while t is the number of observations of the
new, unknown data set. We distinguish between the three
most time-consuming operations in the HOM. One is the
training operation, this includes all operations that can be done
before the actual optimization process. For transfer surrogate
models that includes estimating the parameters of the surrogate
model on the meta-data, for initialization techniques estimating
the initial hyperparameter sequence and our approach will
estimate the plug-in estimators during this step. In comparison
to the other operations, this can be done offline and hence the
time needed for this operation is of less interest for us. The
second operation is update (see Algorithm 1). This operation
has to be done once for each evaluation of a hyperparameter
configuration. It updates the surrogate model such that the
newly gathered information is considered. The last operation
is prediction. This is the operation that evaluates the quality
of a single hyperparameter configuration. Table I summarizes
the space and time complexity for the different operations.
The transfer surrogate models [1], [22], [26] need more time
for offline and online computations than the combination of
a GP with transfer function, respectively. Gaussian processes
need to store the kernel matrix. Hence, the space complexity of
transfer surrogates is quadratic in the number of meta-data sets
instead of only linear. Obviously, the simple GP is beneficial
in terms of space and time complexity. No offline training is
needed in cases without initialization [21] but investing time
to use the meta-knowledge pays off in general [8], [25].

VI. EXPERIMENTAL EVALUATION

Our proposed instance of hyperparameter optimization ma-
chines AHT will be compared to up to seven different com-
petitor strategies on two different meta-data sets. First, we
compare the methods in the scenario of hyperparameter tuning
only. This is carried out on a meta-data set generated on 50
different data sets with the LIBSVM library [5]. This smaller
meta-data set allows the comparison to transfer surrogate
models that are based on Gaussian processes. Finally, we apply
our method in the scenario of combined algorithm selection
and hyperparameter tuning on a meta-data set generated by
using 19 different classifiers of WEKA [11] on 59 different
data sets.

A. Tuning Strategies

In our empirical evaluation we will compare representatives
of the following five types of hyperparameter optimization
machines. Those that do not use a surrogate model at all, those

that use a simple surrogate model and no meta-knowledge,
those that use an initialization to employ meta-knowledge
combined with simple surrogates, and finally our proposed
method that makes use of the transfer function. We want to
remark that we are comparing to the most recent work in our
field we are aware of, including work that has been published
on last year’s ECML and DSAA.

1) No Surrogate Model: Random Search (Random) is se-
lecting hyperparameters at random and hence does not use a
surrogate model. Bergstra and Bengio [3] have shown that
a random hyperparameter search is able to outperform a
grid search in cases with hyperparameters with low effective
dimensionality.

2) Simple Surrogates: Instead of using the name proposed
by the original authors, we decided to give following tuning
strategies a different name, to make their relationship to
SMBO/HOM clear.

Independent Gaussian Process (I-GP): This tuning strat-
egy is better known as Spearmint [21]. It makes use of a Gaus-
sian process with squared-exponential kernel with automatic
relevance determination (SE-ARD) as a surrogate model. No
knowledge from previous experiments is considered.

Independent Random Forest (I-RF): Sequential Model-
based Algorithm Configuration or for short SMAC is another
popular approach for tuning hyperparameters [13]. In contrast
to Spearmint (I-GP) it makes use of random forests instead
of a Gaussian process. Again, no knowledge from previous
experiments is employed. I-RF is used in AutoWEKA [23].

3) Simple Surrogates with Initialization: Simple surrogates
can be improved by employing meta-initializations. We de-
cided to make use of Learning Initialization which has shown
to outperform simpler meta-initializations [25]. We abbreviate
these variations of I-GP and I-RF with I-GP (init) and I-RF
(init), respectively. I-RF with a meta-initialization is used in
Auto-SKLearn [7].

4) Transfer Surrogate Strategies: Transfer surrogate strate-
gies make use of the meta-knowledge employing a special sur-
rogate model. We are comparing to following three strategies
in this category.

Surrogate Collaborative Tuning (SCoT): Bardenet et al.
propose to employ meta-knowledge in two steps [1]. First,
an SVMRank is learned over the whole meta-data. The pre-
dictions are used to replace the labels of the meta-instances.
The authors argue that this solves the problem of different
scales on different data sets. On this transformed meta-data
set, a Gaussian process with SE-ARD kernel is trained. In
the original work, it was proposed to use an RBF kernel
for SVMRank. For reasons of computational complexity, we
follow the lead of Yogatama and Mann [26] and use a linear
kernel instead.

Gaussian Process with Multi-Kernel Learning (MKL-
GP): Yogatama and Mann [26] propose to employ a Gaussian
process trained on the whole meta-data set. To overcome the
problem of different scales on different data sets, the meta-data
is normalized. Furthermore, they propose the use of a new

TABLE II
THE LIST OF ALL META-FEATURES USED BY US.

Meta-Features
Number of Classes Class Probability Max
Number of Instances Class Probability Mean
Log Number of Instances Class Probability Std. Dev.
Number of Features Kurtosis Min
Log Number of Features Kurtosis Max
Data Set Dimensionality Kurtosis Mean
Log Data Set Dimensionality Kurtosis Standard Deviation
Inverse Data Set Dimensionality Skewness Min
Log Inverse Data Set Dimensionality Skewness Max
Class Cross Entropy Skewness Mean
Class Probability Min Skewness Standard Deviation

kernel which is a linear combination of an SE-ARD kernel
and a kernel modeling the distance between data sets.

Factorized Multilayer Perceptron (FMLP): FMLP [19]
is the most recent transfer surrogate model we are aware
of. Published on last year’s ECML PKDD, it is using a
specific neural network to learn the similarity between the
new data set and those from previous ones implicitly in a
latent representation.

5) Our Proposed Strategy: Adaptive hyperparameter trans-
fer learning with simple surrogates (AHT; Section V) is an
instance of hyperparameter optimization machines proposed
by us. In the experiments, we will consider AHT with two
different simple surrogates: a Gaussian process (AHT-GP) and
a random forest (AHT-RF).

All Gaussian processes use a squared exponential kernel
with automatic relevance determination (SE-ARD), the kernel
parameters are estimated by maximizing the marginal likeli-
hood [17]. Hyperparameters of the optimization strategies are
estimated using a grid search on the meta-data using leave-
one-data-set-out cross-validation.

B. Meta-Data Sets

For the creation of the support vector machine (SVM) meta-
data set, we made use of 50 classification data sets chosen at
random from the UCI repository. Existing train/test splits were
merged, shuffled and split into 80% train and 20% test. We
added the 22 meta-features described in Table II.

We trained an SVM [5] for a linear, polynomial and
Gaussian kernel. The resulting hyperparameters are kernel
indicator variables, the trade-off parameter C, the degree of
the polynomial kernel d and the width γ of the Gaussian
kernel. If a hyperparameter was not involved, its value
was set to 0. We precomputed the misclassification rate
on the grid C ∈

{
2−5, . . . , 26

}
, d ∈ {2, . . . , 10} and γ ∈{

10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 102, 103
}

.
The creation of this meta-data set was finished in about 160
CPU hours.

For the problem of combined algorithm and hyperparameter
configuration problem, we chose 59 small classification data
sets from the UCI repository. The misclassification error was
precomputed on a grid for 19 different Weka classifiers [11]
in more than 891 CPU hours.

AHT GP

3

4

5

6

7

0 20 40 60
Number of Trials

A
v
e

ra
g

e
 R

a
n

k

AHT GP

10
3

10
2.5

10
2

10
1.5

10
1

10
0.5

0 20 40 60
Number of Trials

A
v
e

ra
g

e
 D

is
ta

n
c
e

 t
o

 t
h

e
 M

in
im

u
m

AHT GP

0

10

20

30

40

0 20 40 60
Number of Trials

S
o

lv
e

d
 D

a
ta

 S
e

ts

Random
I GP

I RF
SCoT

MKL GP
FMLP

I GP (init)
AHT GP

SVM Meta Data

Fig. 2. Our proposed method AHT outperforms seven competitor methods with respect to all three evaluation metrics.

C. Evaluation Metrics

The quality of the tuning methods is compared with respect
to three evaluation metrics. For computing the average rank,
the methods are ranked with respect to the best hyperparameter
configuration found so far, ties are resolved by giving them
the average rank (Example: four tuning strategies have found
hyperparameter configurations that achieve a misclassification
rate of 0.01, 0.05, 0.05 and 0.1, respectively. Then the ranking
is 1, 2.5, 2.5, 4.). The average distance to the global minimum
was defined in Equation 4 and solved data sets counts the
number of data sets where the method has achieved already
a DTM of 0. Results reported are estimated using a leave-
one-data-set-out cross-validation and averaged over at least
ten repetitions (for strategies being more affected by random
effects (Random, I-RF, I-GP) we committed up to 10,000
repetitions).

D. Hyperparameter Tuning

The task of hyperparameter tuning is to find the best
hyperparameter configuration for a given algorithm. This is the
typical scenario for researchers tuning baselines or their own
new algorithm or for practitioners that have already decided
which algorithm is best for their problem. This problem is
putatively easier because the search space is smaller. Never-
theless, it is an important problem in practice.

MKL-GP tends to provide good results on most of the data
sets and is able to find the best hyperparameter configuration
in few trials (see Figure 2 right) but fails to find any good
hyperparameter configuration on few data sets which leads
to a comparable bad ADTM that is sometimes worse than
random (see Figure 2 middle). Remarkable are also the good
results of I-GP using an initialization, being competitive to the
best transfer surrogate models published so far. Our proposed
method AHT outperforms the competitor methods with respect
to all three evaluation metrics on the SVM meta-data set.
While the improvement within the first ten trials exists but
it is small, a considerable improvement is developed soon

afterwards. The reason for this is that AHT is based mainly
on the meta-knowledge as the competitor methods. At the
point where the meta-knowledge can no longer be exploited
for guiding the search, AHT’s special mechanism is used to
expand its leading position.

E. Combined Algorithm Selection and Hyperparameter Tun-
ing

In this section we want to empirically investigate the perfor-
mance of the different hyperparameter optimization strategies
in the scenario of combined algorithm selection and hyper-
parameter tuning. This problem leads to larger meta-data sets
(about 1.4 million meta-instances) which did not allow us to
commit these experiments for the transfer surrogates that are
based on Gaussian processes. Nevertheless, we still compare
to the transfer surrogate FMLP which has proven to be the
best among the transfer surrogates [19].

In the previous experiments we always combined AHT with
a Gaussian process. Since it was previously reported that the
random forest as a surrogate model provides better results for
problems with high-dimensional and discrete hyperparameter
spaces [6] which is the case on the Weka meta-data set (more
than 60% are indicator variables), we also provide results
for AHT combined with a random forest. For us, the most
promising advantage of a random forest is the shorter training
time compared to a Gaussian process. We also committed these
experiments on the SVM meta-data set but the results were
worse than the combination with a Gaussian process and thus
we omitted them to avoid overcrowded figures.

Figure 3 summarizes the results. Surprisingly, initialization
(I-GP (init), I-RF (init)) did not provide good results for this
meta-data set. We also tried to use HOM with the transfer
function proposed in Equation 5 and set α such that an
initialization effect was achieved but it still did not provide
useful results. This is another indication that stresses that the
soft and adaptive initialization effect of AHT is better than
a hard initialization. Hence, the transfer surrogate (FMLP) is

AHT GP
AHT RF

2

3

4

5

6

0 100 200 300
Number of Trials

A
v
e

ra
g

e
 R

a
n

k

AHT GP/AHT RF10
2

10
1.5

10
1

10
0.5

0 100 200 300
Number of Trials

A
v
e

ra
g

e
 D

is
ta

n
c
e

 t
o

 t
h

e
 M

in
im

u
m

AHT GP

0

10

20

0 100 200 300
Number of Trials

S
o

lv
e

d
 D

a
ta

 S
e

ts

I GP
I RF

FMLP
I GP (init)

I RF (init)
AHT GP

AHT RF

Weka Meta Data

Fig. 3. AHT with two different surrogate models achieves the best ADTM on the Weka meta-data set but the combination with a Gaussian process leads to
finding optimal hyperparameter configurations in more cases.

for this meta-data set clearly better than an initialization but in
the end, AHT still provides the best results. The combination
of AHT with a Gaussian process (AHT-GP) achieves similar
results with respect to the ADTM compared to AHT-RF but
finds the optimum on many data sets faster than AHT-RF.

F. Run Time

Finally, an important problem for us to tackle was to reduce
the time overhead introduced by the different tuning strategies.
Figure 4 summarizes these results. Unsurprisingly, strategies
relying on simple surrogate models (I-GP, I-RF) are the fastest.
We have seen that combining simple surrogates with an
initialization (that does not result in an time overhead during
the optimization) achieved good results for hyperparameter
tuning but they showed less convincing results in the setting
of combined algorithm selection and hyperparameter tuning.
Transfer surrogates (FMLP) are by orders of magnitudes
the slowest approach but have found good hyperparameter
configurations in both scenarios. Finally, we achieved our
goal of combining the advantages of both approaches. AHT
provides the best results in both scenarios but has less time
overhead than transfer surrogates for finding good hyperpa-
rameter configurations on average.

G. Case Study

For an in-depth understanding of how the different hyper-
parameter optimization strategies work, we select one data set
for a deeper analysis. We select the banana data set because
none of the tuning strategies was able to find the optimal
hyperparameter configurations within 300 trials. Figure 5
shows the hyperparameter performance distribution for the
different algorithms giving first insight why this data set is
actually that difficult to optimize for. There are many different
algorithms achieving small misclassification rates and hence it
is difficult to narrow down the search to just few algorithms.
Figure 6 gives insight with what frequency a tuning strategy

●

●

●

●

●
●

●
●

●
● ● ● ● ● ●

10
2

10
0

10
2

10
4

0 100 200 300

Number of Trials

C
u
m

u
la

ti
v
e
 T

im
e
 i
n
 S

e
c
o
n
d
s

● I GP

I RF

FMLP

AHT GP

AHT RF

Cumulative Overhead Time

Fig. 4. Strategies based on transfer surrogates are the slowest among all
investigated methods. AHT provides the best performance for a reasonable
time overhead.

has selected a specific algorithm for evaluating a hyperpa-
rameter configuration. Our Weka meta-data set is limited to
hyperparameter configurations that we have evaluated before-
hand to make this experiment possible. Because the different
algorithms have a different number of hyperparameters, the
number of test meta-instances varies between the different
algorithms. The uniform distribution shows the fraction of test
meta-instances per algorithm and hence can be used as an
indication whether a tuning strategy prefers an algorithm or
not. If the value of the uniform distribution is higher than
the value of the tuning strategy, the tuning strategy does
not believe that the optimum can be here and vice versa.
Thus, it can be seen that the tuning strategies are capable of
identifying that a multilayer perceptron does not achieve good
performance on this specific data set while k-nearest neighbors
(IBK) does.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●
●●●●●●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●

●●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●
●●●●●

●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●

●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●

●●●●●

●●●●●●●●●●

●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●

●●●●●

●●●●●

●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●

●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●●●●●●●
●●
●●●●●
●●●●●
●●●●●
●●●●●
●●●●●●●●●●●●●●●

●●●●●

●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●
●●●●●
●●●●●
●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●
●

●
●

●

●●

●●●●●●●●●

●●●
●●

●●
●●●
●

●

●

●●

●●●●●●●●●

●

●●

●●●●●●●●●

●

●●

●●●●●●●●●

●

●●

●●●●●●●●●

●

●●

●●●●●●●●●

●

●●

●●●●●●●●●

●

●●

●●●●●●●●●

●

●●

●●●●●●●●●

●

●●

●●●●●●●●●

●●●●●●●●●●●●

●●

●

●●●●●●●●●

●●

●●

●●

●●

0.1

0.2

0.3

0.4

0.5

Bayes
Net

Decision
Stump

Decision
Table

IBK J48 KStar LMT Logistic Multilayer
Perceptron

Naive
Bayes

One R PART Random
Forest

Random
Tree

REP
Tree

RIPPER Simple
Logistic

SMO ZERO R

M
is

c
la

s
s
if
ic

a
ti
o

n
 R

a
te

Fig. 5. Distribution over all hyperparameter configurations for different algorithms of the data set banana.

0.0

0.2

0.4

0.6

Bayes Net Decision
Stump

Decision
Table

IBK J48 KStar LMT Logistic Multilayer
Perceptron

Naive
Bayes

One R PART Random
Forest

Random
Tree

REP
Tree

RIPPER Simple
Logistic

SMO ZERO R

F
re

q
u

e
n

c
y

Strategy

I GP

I RF

FMLP

I GP (init)

I RF (init)

AHT GP

AHT RF

Uniform

Fig. 6. Selection frequency of evaluating the performance of a hyperparameter configuration for a specific hyperparameter configuration. If the value is higher
than the uniform distribution, this algorithm was preferred by the tuning strategy.

VII. CONCLUSION

We propose hyperparameter optimization machines as a
generalization of sequential model-based optimization that
includes current meta-learning extensions for the use in the hy-
perparameter optimization context. This generalization allows
us to focus on the new hyperparameter optimization strategy
AHT which uses meta-knowledge in an adaptive fashion and
combines it with time- and space-efficient simple surrogate
models. In experiments on two different meta-data sets for the
problem of hyperparameter tuning as well as combined algo-
rithm selection and hyperparameter tuning, the advantage of
AHT compared to various other hyperparameter optimization
strategies is shown empirically. We are able to show that AHT
produces less time-overhead for the optimization than transfer
surrogates by outperforming all competitor methods. However,
we acknowledge that simple surrogates using an initialization
are still the method with least overhead but this approach does
not achieve good results in the scenario of combined algorithm
selection and hyperparameter tuning.

ACKNOWLEDGMENT

The authors gratefully acknowledge the co-funding of
their work by the German Research Foundation (Deutsche
Forschungsgesellschaft) under grant SCHM 2583/6-1.

REFERENCES

[1] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag. Collaborative hyper-
parameter tuning. In Proceedings of the 30th International Conference
on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013,
pages 199–207, 2013.

[2] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-
parameter optimization. In Advances in Neural Information Processing
Systems 24: 25th Annual Conference on Neural Information Processing
Systems 2011. Proceedings of a meeting held 12-14 December 2011,
Granada, Spain., pages 2546–2554, 2011.

[3] J. Bergstra and Y. Bengio. Random search for hyper-parameter opti-
mization. J. Mach. Learn. Res., 13:281–305, Feb. 2012.

[4] G. C. Cawley. Model selection for support vector machines via adaptive
step-size tabu search. In Proceedings of the International Conference
on Artificial Neural Networks and Genetic Algorithms, 2001.

[5] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology,
2:27:1–27:27, 2011. Software available at http://www.csie.ntu.edu.tw/
∼cjlin/libsvm.

[6] K. Eggensperger, M. Feurer, F. Hutter, J. Bergstra, J. Snoek, H. Hoos,
and K. Leyton-Brown. Towards an empirical foundation for assessing
bayesian optimization of hyperparameters. In NIPS workshop on
Bayesian Optimization in Theory and Practice, 2013.

[7] M. Feurer, A. Klein, K. Eggensperger, J. T. Springenberg, M. Blum, and
F. Hutter. Efficient and robust automated machine learning. In Advances
in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015,
Montreal, Quebec, Canada, pages 2962–2970, 2015.

[8] M. Feurer, J. T. Springenberg, and F. Hutter. Initializing bayesian
hyperparameter optimization via meta-learning. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30,
2015, Austin, Texas, USA., pages 1128–1135, 2015.

[9] F. Friedrichs and C. Igel. Evolutionary tuning of multiple svm parame-
ters. Neurocomput., 64:107–117, Mar. 2005.

[10] X. C. Guo, J. H. Yang, C. G. Wu, C. Y. Wang, and Y. C. Liang. A novel
ls-svms hyper-parameter selection based on particle swarm optimization.
Neurocomput., 71(16-18):3211–3215, Oct. 2008.

[11] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten. The weka data mining software: An update. SIGKDD Explor.
Newsl., 11(1):10–18, Nov. 2009.

[12] M. D. Hoffman, B. Shahriari, and N. de Freitas. On correlation and
budget constraints in model-based bandit optimization with application
to automatic machine learning. In Proceedings of the Seventeenth In-
ternational Conference on Artificial Intelligence and Statistics, AISTATS
2014, Reykjavik, Iceland, April 22-25, 2014, pages 365–374, 2014.

[13] F. Hutter, H. H. Hoos, and K. Leyton-Brown. Sequential model-based
optimization for general algorithm configuration. In Proceedings of the

5th International Conference on Learning and Intelligent Optimization,
LION’05, pages 507–523, Berlin, Heidelberg, 2011. Springer-Verlag.

[14] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient global optimization
of expensive black-box functions. J. of Global Optimization, 13(4):455–
492, Dec. 1998.

[15] R. Leite, P. Brazdil, and J. Vanschoren. Selecting classification al-
gorithms with active testing. In Machine Learning and Data Mining
in Pattern Recognition - 8th International Conference, MLDM 2012,
Berlin, Germany, July 13-20, 2012. Proceedings, pages 117–131, 2012.

[16] N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox. A high-throughput
screening approach to discovering good forms of biologically inspired
visual representation. PLoS Computational Biology, 5(11):e1000579,
2009. PMID: 19956750.

[17] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[18] M. Reif, F. Shafait, and A. Dengel. Meta-learning for evolutionary
parameter optimization of classifiers. Machine Learning, 87(3):357–
380, 2012.

[19] N. Schilling, M. Wistuba, L. Drumond, and L. Schmidt-Thieme. Hy-
perparameter optimization with factorized multilayer perceptrons. In
Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2015, Porto, Portugal, September 7-11, 2015.
Proceedings, Part II, 2015.

[20] K. A. Smith-Miles. Cross-disciplinary perspectives on meta-learning for
algorithm selection. ACM Comput. Surv., 41(1):6:1–6:25, Jan. 2009.

[21] J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimiza-
tion of machine learning algorithms. In Advances in Neural Information
Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6,
2012, Lake Tahoe, Nevada, United States., pages 2960–2968, 2012.

[22] K. Swersky, J. Snoek, and R. P. Adams. Multi-task bayesian opti-
mization. In Advances in Neural Information Processing Systems 26:
27th Annual Conference on Neural Information Processing Systems
2013. Proceedings of a meeting held December 5-8, 2013, Lake Tahoe,
Nevada, United States., pages 2004–2012, 2013.

[23] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown. Auto-weka:
Combined selection and hyperparameter optimization of classification
algorithms. In Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’13, pages
847–855, New York, NY, USA, 2013. ACM.

[24] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Hyperparameter
search space pruning - a new component for sequential model-based
hyperparameter optimization. In Machine Learning and Knowledge
Discovery in Databases - European Conference, ECML PKDD 2015,
Porto, Portugal, September 7-11, 2015. Proceedings, Part II, 2015.

[25] M. Wistuba, N. Schilling, and L. Schmidt-Thieme. Learning hyperpa-
rameter optimization initializations. In International Conference on Data
Science and Advanced Analytics, DSAA 2015, Paris, France, October
19 - 21, 2015, 2015.

[26] D. Yogatama and G. Mann. Efficient transfer learning method for
automatic hyperparameter tuning. In International Conference on
Artificial Intelligence and Statistics (AISTATS 2014), 2014.

