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Abstract. The choice of hyperparameters and the selection of algo-
rithms is a crucial part in machine learning. Bayesian optimization meth-
ods have been used very successfully to tune hyperparameters automat-
ically, in many cases even being able to outperform the human expert.
Recently, these techniques have been massively improved by using meta-
knowledge. The idea is to use knowledge of the performance of an algo-
rithm on given other data sets to automatically accelerate the hyperpa-
rameter optimization for a new data set.
In this work we present a model that transfers this knowledge in two
stages. At the �rst stage, the function that maps hyperparameter con-
�gurations to hold-out validation performances is approximated for pre-
viously seen data sets. At the second stage, these approximations are
combined to rank the hyperparameter con�gurations for a new data set.
In extensive experiments on the problem of hyperparameter optimization
as well as the problem of combined algorithm selection and hyperparam-
eter optimization, we are outperforming the state of the art methods.

Keywords: hyperparameter optimization, meta-learning, transfer learn-
ing

1 Introduction

The tuning of hyperparameters is an omnipresent problem in the machine learn-
ing community. In comparison to model parameters, which are estimated by a
learning algorithm, hyperparameters are parameters that have to be speci�ed
before the execution of the algorithm. Typical examples for hyperparameters
are the trade-o� parameter C of a support vector machine or the number of
layers and nodes in a neural network. Unfortunately, the choice of the hyperpa-
rameters is crucial and decides whether the performance of an algorithm is state
of the art or just moderate. Hence, the task of hyperparameter optimization is
as important as developing new models [2, 5, 18, 23, 27].

The traditional way of �nding good hyperparameter con�gurations is by us-
ing a combination of manual and grid search. This procedure are a brute force
approach of searching the hyperparameter space. They are very time-consuming



or even infeasible for high-dimensional hyperparameter spaces. Therefore, meth-
ods to steer the search for good hyperparameter con�gurations are currently an
interesting topic for researchers [3, 23, 27].

Sequential model-based optimization (SMBO) [13] is a black-box optimiza-
tion framework and is currently the state of the art for automatic hyperparameter
optimization. Within this framework, the trials of already tested hyperparam-
eter con�gurations are used to approximate the true hyperparameter response
function using a surrogate model. Based on this approximation, a promising
new hyperparameter con�guration is chosen and tested in the next step. The
result of this next trial is then used to update the surrogate model for further
hyperparameter con�guration acquisitions.

Human experts utilize their experience with a machine learning model and
try hyperparameter con�gurations that have been good on other data sets. This
transfer of knowledge is one important research direction in the domain of au-
tomatic hyperparameter optimization. Currently, two di�erent approaches to
integrate this idea into the SMBO framework exist. Either by training the sur-
rogate model on past experiments [1, 21, 25, 33], or by using the information on
past experiments to initialize the new search [7, 32].

We propose a two-stage approach to consider the experiences with di�erent
hyperparameter con�gurations on other data sets. At the �rst stage, we approx-
imate the hyperparameter response function of the new data set as well as of
previous data sets. This approximation is then combined to rank the hyperpa-
rameter con�gurations for the new data set, considering the similarity between
the new data set and the previous ones. In two extensive experiments for the
problem of hyperparameter optimization and the problem of combined algorithm
selection and hyperparameter optimization, we show that our two-stage approach
is able to outperform current state of the art competitor methods, which have
been recently published on established machine learning conferences.

2 Related Work

The aim of automatic hyperparameter optimization is to enable non-experts to
successfully use machine learning models but also to accelerate the process of
�nding good hyperparameter con�gurations. Sequential model-based optimiza-
tion (SMBO) is the current state of the art for automatic hyperparameter op-
timization. Various approaches exist to accelerate the search for good hyperpa-
rameter con�gurations. One important approach is the use of meta-knowledge.
This approach has already proven its bene�t for other hyperparameter optimiza-
tion approaches [9, 16, 20, 29]. One easy way to make use of meta-knowledge is
through initialization. This approach is universal and can be applied for every
hyperparameter optimization method. Reif et al. [20] suggest to choose those
hyperparameter con�gurations for a new data set as initial trials that performed
best on a similar data set in the context of evolutionary parameter optimiza-
tion. Here, the similarity was de�ned through the distance among meta-features,
which describe properties of a data set. This idea was applied to SMBO by Feurer
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et al. [7] and later improved [8]. Recently, it was proposed to learn initial hyper-
parameter con�gurations in such a way that it is no longer necessary to be limited
to choose initial hyperparameter con�gurations from the set of hyperparameter
con�gurations, which have been chosen in previous experiments [32].

While the initialization can be used for any hyperparameter optimization
method, the idea to use transfer surrogate models is speci�c for the SMBO
framework. Bardenet et al. [1] were the �rst who proposed to learn the surrogate
model not only on the current data set but also over previous experiments in or-
der to make use of the meta-knowledge. Soon, this idea was further investigated:
speci�c Gaussian processes [25, 33] and neural networks [21] were proposed as
surrogate models.

The aforementioned ideas make use of meta-knowledge to accelerate the
search for good hyperparameter con�gurations. Another way of saving time is
to stop an hyperparameter con�guration evaluation early if it appears to be not
promising after few training iterations. Obviously, this is only possible for it-
erative learning algorithms, which are using gradient-based optimization. Even
though this approach is orthogonal to the meta-learning approach, the aim is
the same, i.e. accelerating the search for good hyperparameter con�gurations.
Domhan et al. [6] propose to predict the development of the learning curve based
on few iterations. If the predicted development is less promising than the cur-
rently best con�guration, the currently investigated con�guration is discarded.
A similar approach is proposed by Swersky et al. [26]. Instead of trying di�erent
con�gurations sequentially and eventually discarding them, they learn the mod-
els for various hyperparameter con�gurations at the same time and switch from
one learning process to the other if it looks more promising.

3 Background

In this section the hyperparameter optimization problem is formally de�ned and,
for the sake of completeness, the sequential model-based optimization framework
is presented.

3.1 Hyperparameter Optimization Problem Setup

A machine learning algorithm Aλ is a mapping Aλ : D → M where D is the
set of all data sets, M is the space of all models and λ ∈ Λ is the chosen
hyperparameter con�guration with Λ = Λ1 × . . .× ΛP being the P-dimensional
hyperparameter space. The learning algorithm estimates a model Mλ ∈ M,
which minimizes a loss function L (e.g. residual sum of squares), that is penalized
with a regularization term R (e.g. Tikhonov regularization) with respect to the
training set Dtrain of the data set D:

Aλ

(
Dtrain

)
= arg min

Mλ∈M
L
(
Mλ, D

train
)
+R (Mλ) . (1)

Then, the task of hyperparameter optimization is to �nd the hyperparameter
con�guration λ∗ that leads to a model Mλ∗ , which minimizes the loss on the



validation data set Dvalid, i.e.

λ∗ = argmin
λ∈Λ

L
(
Aλ

(
Dtrain

)
, Dvalid

)
= argmin

λ∈Λ
fD (λ) . (2)

The function fD is the hyperparameter response function of data set D.

fD (λ) = L
(
Aλ

(
Dtrain

)
, Dvalid

)
(3)

For the sake of demonstration, in the remaining sections, we consider the problem
of tuning the hyperparameters of a classi�er. Thus, f returns the misclassi�cation
rate. This is obviously no limitation, but shall help the reader to understand the
concepts given a concrete example.

3.2 Sequential Model-based Optimization

Sequential model-based optimization (SMBO) [13], originally proposed for black-
box optimization, can be used for optimizing hyperparameters automatically by
using the SMBO framework to minimize the hyperparameter response function
(Equation 3) [2]. SMBO consists of two components, i) a surrogate model Ψ ,
that is used to approximate the function f , which we want to minimize, and ii)
an acquisition function a, that decides which hyperparameter to try next.

Algorithm 1 outlines the SMBO framework for minimizing the function f .
For T many iterations di�erent hyperparameters are tried. In iteration t, we
approximate f using our surrogate model Ψt+1 based on the observation history
Ht, the set of all hyperparameter con�gurations and performances, which have
been evaluated evaluated so far. The surrogate model is an approximation of
f with the property that it can be evaluated fast. Based on the predictions of
Ψ and the corresponding uncertainties about these predictions, the acquisition
function �nds a trade-o� between exploitation and exploration and determines
the hyperparameter con�guration to try next. This con�guration is then evalu-
ated, and the new observation is added to the observation history. After T trials,
the best performing hyperparameter con�guration is returned.

Algorithm 1 Sequential Model-based Optimization

Input: Hyperparameter space Λ, observation historyH, number of trials T , acquisition
function a, surrogate model Ψ .

Output: Best hyperparameter con�guration found.
1: for t = 1 to T do

2: Fit Ψt+1 to Ht
3: λ← argmaxλ∈Λ a

(
µ (Ψt+1 (λ)) , σ (Ψt+1 (λ)) , f

min
)

4: Evaluate f (λ)
5: Ht+1 ← Ht ∪ {(λ, f (λ))}
6: if f (λ) < fmin then
7: λmin, fmin ← λ, f (λ)
8: return λmin



Since the acquisition function a needs some certainty about the prediction,
common choices are Gaussian processes [1, 23, 25, 33] or ensembles, such as ran-
dom forests [12]. Typical acquisition functions are the expected improvement
[13], the probability of improvement [13], the conditional entropy of the mini-
mizer [28] or a multi-armed bandit based criterion [24]. The expected improve-
ment is the most prominent choice for hyperparameter optimization and is also
the acquisition function, which we choose. Formally, the improvement for a hy-
perparameter con�guration λ is de�ned as

I (λ) = max
{
fmin − Y, 0

}
(4)

where fmin is currently the best function value and Y is a random variable
modeling our knowledge about the value of the function f for the hyperparameter
con�guration λ, which depends on Ht. The hyperparameter con�guration with
highest expected improvement, i.e.

E [I (λ)] = E
[
max

{
fmin − Y, 0

}
| Ht

]
, (5)

is chosen for the next evaluation. Assuming Y ∼ N
(
µ (Ψt+1 (λ)) , σ

2 (Ψt+1 (λ))
)
,

the expected improvement can be formulated in closed-form as

E [I (λ)] =

{
σ (Ψt+1 (λ)) (Z · Φ (Z) + φ (Z)) if σ (Ψt+1 (λ)) > 0

0 otherwise
(6)

where

Z =
fmin − µ (Ψt+1 (λ))

σ (Ψt+1 (λ))
(7)

where φ (·) and Φ (·) denote the standard normal density and distribution func-
tion, and µ (Ψt+1 (λ)) and σ (Ψt+1 (λ)) are the expected value and the standard
deviation of the prediction Ψt+1 (λ).

4 Two-Stage Surrogate Model

Our proposed two-stage surrogate model is explained in this section. The �rst
stage of the surrogate model approximates the hyperparameter response func-
tions of a new data set and each data set from the meta-data individually with
Gaussian processes. The second stage combines the �rst-stage models by tak-
ing the similarity between the new data set and the data set from previous
experiments into consideration. We construct a ranking of hyperparameter con-
�gurations as well as a prediction about the uncertainty of this ranking. The
proposed two-stage architecture is visualized in Figure 1.

4.1 Notation

In the following, the pre�xmeta is used to distinguish between the di�erent learn-
ing problems. The traditional problem is to learn some parameters θ on a given



Fig. 1. At the �rst stage the hyperparameter response functions of the new data set
Dnew as well as data sets D = {D1, . . . , Dk} used for previous experiments are approx-
imated using known evaluations. At the second stage the predictions of each individual
model f̂D are taken into account weighted by the similarity between D and Dnew to
determine the �nal predicted score.

data set containing instances with predictors. For the hyperparameter optimiza-
tion problem you can create meta-data sets consisting of meta-instances with
meta-predictors. A meta-data set contains meta-instances (λi, fD (λi)) where
fD (λi) is the target and λi are the predictors. The hyperparameter response
function fD : Λ→ R is a function for a speci�c classi�er and a speci�c data set
D. For a given hyperparameter con�guration, it returns the misclassi�cation rate
after training the classi�er with the respective hyperparameter con�guration on
the training data set D. The task is to �nd a good hyperparameter con�gura-
tions on a new data set Dnew within T trials. To achieve this, a meta-data set,
i.e. meta-instances for other data sets D ∈ D, is given and this knowledge is
transferred to the new problem.

4.2 First Stage - Hyperparameter Response Function

Approximation

The �rst stage of our two-stage surrogate model approximates the hyperpa-
rameter response function for each data set. The meta-data set can be used to
approximate the hyperparameter response function fD for all D ∈ D by learn-
ing a machine learning model f̂D, using the meta-instances of each data set D.
Similarly, we can learn an approximation f̂Dnew

for the new data set, for which

we have only few, but a growing number of meta-instances. Before learning f̂D
for all D ∈ D, the labels of the meta-instances are scaled to [0, 1] per data set.
This is done such that each data set has equal in�uence on the second stage.
The labels of the new data set Dnew remain untouched.

For approximating the hyperparameter response function fD, any machine
learning model can be used, which is able to capture high non-linearity. We



decide to use Gaussian processes [19], which are a very prominent surrogate
model for SMBO [1, 23, 25, 33].

4.3 Second Stage - Final Hyperparameter Con�guration Ranking

The second stage combines all models of the �rst stage within one surrogate
model Ψ to rank the di�erent hyperparameter con�gurations and predict the
uncertainty about the ranking. The predicted score of a hyperparameter con�g-
uration is determined using kernel regression [11]. We use the Nadaraya-Watson
kernel-weighted average to predict the mean value of the surrogate model

µ (Ψ (λ)) =

∑
D∈D∪{Dnew} κρ

(
χDnew

,χD
)
f̂D (λ)∑

D∈D∪{Dnew} κρ
(
χDnew

,χD
) (8)

with the Epanechnikov quadratic kernel

κρ (χD,χD′) = δ

(
‖χD − χD′‖2

ρ

)
(9)

with

δ (t) =

{
3
4

(
1− t2

)
if t ≤ 1

0 otherwise
(10)

where ρ > 0 is the bandwidth and χD is a vector describing the data set D. We
discuss the description of data sets in-depth in the next section.

The predicted uncertainty for a hyperparameter con�guration λ is de�ned
as

σ (Ψ (λ)) = σ
(
f̂Dnew

(λ)
)

(11)

Using Equations 8 and 11, the expected improvement for arbitrary hyperpa-
rameter con�gurations can be estimated. Thus, our Two-Stage Transfer surrogate
model Ψ can be used within the SMBO framework described in Algorithm 1.

4.4 Data Set Description

In this section we introduce three di�erent ways to describe data sets in vector
form.

Description using Meta-Features The most popular way to describe data
sets is by utilizing meta-features [1, 20, 22]. These are simple, statistical or infor-
mation theoretic properties extracted from the data set. The similarity between
two data sets, as de�ned in Equation 9, is then dependent on the Euclidean dis-
tance between the meta-features of the corresponding data sets. In this work we
are using the meta-features listed in Table 1. For a more detailed explanation, we
refer the reader to Michie et al. [17]. A well-known problem with meta-features
is that it is a di�cult problem to �nd and choose meta-features that are able to
adequately describe a data set [15].



Table 1. The list of all meta-features used by us.

Meta-Features

Number of Classes Class Probability Max
Number of Instances Class Probability Mean
Log Number of Instances Class Probability Standard Deviation
Number of Features Kurtosis Min
Log Number of Features Kurtosis Max
Data Set Dimensionality Kurtosis Mean
Log Data Set Dimensionality Kurtosis Standard Deviation
Inverse Data Set Dimensionality Skewness Min
Log Inverse Data Set Dimensionality Skewness Max
Class Cross Entropy Skewness Mean
Class Probability Min Skewness Standard Deviation

Description using Pairwise Hyperparameter Performance Rankings

Describing data sets based on pairwise hyperparameter performance rankings has
been used in few approaches [16, 29]. The idea is to select all paired combinations
of hyperparameter con�gurations (λi,λj) evaluated on the new data set Dnew

and estimate how often two data sets D and D′ agree on the ranking. Usually, it
is assumed that the hyperparameter con�gurations evaluated on Dnew have also
been evaluated on all data sets from the meta-data set D ∈ D. In the context of
general hyperparameter tuning, this is likely not the case. Therefore, we propose
to use the �rst stage predictors to approximate the performances to overcome
this problem.

Formally, given t many observations on Dnew for the hyperparameter con�g-
urations λ1, . . . ,λt, Dnew can be described as χDnew

= ((χDnew
)i)i=1,...,t2

∈ Rt2 ,

(
χDnew

)
j+(i−1)t =

{
1 if fDnew

(λi) > fDnew
(λj)

0 otherwise
. (12)

Similarly, using the same t hyperparameter con�gurations, we can de�ne for all
D ∈ D

(χD)j+(i−1)t =

{
1 if f̂D (λi) > f̂D (λj)

0 otherwise
. (13)

Please note that we use f̂ instead of f . As explained before, a hyperparameter
con�guration that is evaluated on Dnew was likely not evaluated on all data
sets D ∈ D. For this reason we predict the performance using the �rst stage
predictors. Using this description, the Euclidean distance between two data sets
is the number of discordant pairs [14].



5 Experimental Evaluation

5.1 Tuning Strategies

We introduce all tuning strategies considered in the experiments. We consider
strategies that do not use knowledge from previous experiments as well as those
that use it.

Random Search. As the name suggests, this strategy chooses hyperparameter
con�gurations at random. Bergstra and Bengio [3] have shown that this outper-
forms grid search in scenarios with hyperparameters with low e�ective dimen-
sionality.

Independent Gaussian Process (I-GP). This tuning strategy uses a Gaussian
process with squared-exponential kernel with automatic relevance determination
(SE-ARD) as a surrogate model [23]. It only uses knowledge from the current
data set and is not using any knowledge from previous experiments.

Spearmint. While I-GP is our own implementation of SMBO with a Gaussian
process as a surrogate model we also compare to the implementation by Snoek
et al. [23]. The main di�erence to I-GP is the use of the Matérn 5/2 kernel. We
added this as a baseline because it is considered to be a very strong baseline.

Independent Random Forest (I-RF). Besides Gaussian processes, random forests
are another popular surrogate model [12], which we compare against in the ex-
periments. We compared our own implementation against the original imple-
mentation of SMAC. Since our implementation provided stronger results, we
will report these results. No knowledge from previous experiments is employed.

Surrogate Collaborative Tuning (SCoT). SCoT [1] uses meta-knowledge in a two
step approach. In the �rst step, an SVMRank is learned over the whole meta-
data. Its prediction for the meta-instances are used to replace the labels of the
meta-instances. Bardenet et al. [1] argue that this overcomes the problem of
having data sets with di�erent scales of labels. On this transformed meta-data
set, a Gaussian process with SE-ARD kernel is trained. In the original work it
was proposed to use an RBF kernel for SVMRank. For reasons of computational
complexity, we follow the lead of Yogatama and Mann [33] and use a linear kernel
instead.

Gaussian Process with Multi-Kernel Learning (MKL-GP). Yogatama and Mann
[33] propose to use a Gaussian process as a surrogate model for the SMBO
framework. To tackle the problem of di�erent scales on di�erent data sets they
are normalizing the data. Furthermore, they are using a kernel which is a linear
combination of an SE-ARD kernel and a kernel modeling the distance between
data sets.



Factorized Multilayer Perceptron (FMLP). FMLP [21] is the most recent surro-
gate model we are aware of. Published on last year's ECML PKDD, it is using
a speci�c neural network to learn the similarity between the new data set and
those from previous ones implicitly in a latent representation.

Two-Stage Transfer Surrogate (TST). This is the surrogate model proposed by
us in this work. We consider two variations with two di�erent data set represen-
tations. TST-M is using the meta-feature representation for the data sets, TST-R
is using the pairwise ranking representation. We are using SE-ARD kernels for
the Gaussian processes.

The kernel parameters are learned by maximizing the marginal likelihood
on the meta-training set [19]. All hyperparameters of the tuning strategies are
optimized in a leave-one-data-set-out cross-validation on the meta-training set.

The results reported estimated using a leave-one-data-set-out cross-validation
and are the average of ten repetitions. For strategies with random initialization
(Random, I-GP, Spearmint, I-RF), we report the average over thousand repe-
titions due to the higher variance. Hyperparameter con�gurations are limited
to the precomputed grid which makes the experiment computational feasible
for our infrastructure. We do not believe that limiting the black-box search to
a grid has any impact on the results. In the end, this can be considered as
additional constraints on the search space. In practice, our surrogate model al-
lows �nding arbitrary hyperparameter con�gurations like all other competitor
methods. The evaluation was committed in the same way for transferring and
non-transferring methods. Meta-hyperparameters for the surrogate models were
individually tuned. For those strategies that use meta-features (SCoT, MKL-GP,
TST-M), we use those meta-features that are described in Table 1.

5.2 Meta-Data Sets

We use two meta-data set introduced in [31] but increase the number of meta-
features from three to the 22 listed in Table 1. The support vector machine
(SVM) meta-data set was created using 50 classi�cation data sets chosen at
random from the UCI repository. Existing train/test splits were merged, shu�ed
and split into 80% train and 20% test.

The SVM [4] was trained for three di�erent kernels (linear, polynomial and
Gaussian) such that the hyperparameter dimension is six. Three dimensions are
used for kernel indicator variables, one for the trade-o� parameter C, one for the
degree of the polynomial kernel d and one for the width γ of the Gaussian kernel.
If a hyperparameter was not involved, its value was set to 0. The misclassi�cation
error was precomputed on the grid C ∈

{
2−5, . . . , 26

}
, d ∈ {2, . . . , 10} and

γ ∈
{
10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 102, 103

}
resulting into 288

meta-instances per data set. Creating this meta-data set took about 160 CPU
hours.



Furthermore, we use a Weka meta-data set to evaluate on the combined
algorithm and hyperparameter con�guration problem as tackled in [27]. 59 clas-
si�cation data sets are preprocessed as done for the SVM meta-data set. Using
19 di�erent Weka classi�ers [10], we precomputed the misclassi�cation error on a
grid which resulted into 21,871 hyperparameter con�gurations per data set such
that the overall meta-data contains 1,290,389 meta-instances. It took us more
than 891 CPU hours to create this meta-data set.

To show that the tuning strategies can also deal with hyperparameter con-
�gurations they have never seen on other data sets, the tuning strategies only
have access on meta-instances on a subset of the meta-instances. The evaluation
on meta-test was done using all meta-instances.

To enable reproducibility, we provide a detailed description of the meta-data
sets, the meta-data sets itself and our source code on GitHub [30].

5.3 Evaluation Metrics

We compare all tuning methods with respect to two common evaluation met-
rics: average rank and average distance to the global minimum. The average
rank ranks the tuning strategies per data set according to the best found hyper-
parameter con�guration. These ranks are then averaged over all data sets. The
average distance to the global minimum after t trials is de�ned as

ADTM (Λt,D) =
∑
D∈D

min
λ∈Λt

fD (λ)− fmin

D

fmax

D − fmin

D

(14)

where fmax
D and fmin

D are the worst and best value on the precomputed grid,
respectively. Λt is the set of hyperparameter con�gurations, that have been eval-
uated in the �rst t trials. The performance per data set is scaled between 0 and 1
to get rid of the in�uence of di�erent misclassi�cation o�sets and scales. Finally,
the distances between the performance of the best performing hyperparameter
con�guration found to the best possible performance on the grid is averaged over
all data sets.

5.4 Experiments

We compare the di�erent hyperparameter optimization methods in two di�erent
scenarios: i) hyperparameter tuning and ii) combined algorithm selection and
hyperparameter tuning. For the task of hyperparameter tuning, we optimize
the hyperparameters of a support vector machine. The results are summarized
in Figure 2. What we can see is that TST-R is outperforming the competitor
methods with respect to both evaluation metrics by a large margin. TST-M has
a similar good start as TST-R but its performance degenerates after few trials.
Because the only di�erence between TST-R and TST-M is the way the data
sets are described, one might argue that meta-features are less descriptive in
describing a data set than the approach of pairwise rankings. We do not think
that one can infer this from these results. The true reason for this behavior is



that the distances for TST-R are updated after each trials and the distance to the
data sets from previous experiments is increasing over time. Thus, the in�uence
of the meta-data set vanishes and TST-R is focusing only on the knowledge
about the new data set at some point of time. Contrariwise, TST-M is using a
constant distance between data set based on the meta-features. While the meta-
knowledge is useful especially in the beginning, TST-M keeps relying on this such
that the information of the new data set is not optimally taken into account.
One simple way of �xing this problem is to decay the in�uence of the meta-
knowledge which would introduce at least one meta-hyperparameter. Because
TST-R is performing well without an additional meta-hyperparameter for the
decay, we do not follow this idea here.

Spearmint provides stronger results than I-GP due to the choice of a di�erent
kernel. This might be an indication that we can further improve TST-R, if we
use the Matérn 5/2 kernel instead of the SE-ARD.
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Fig. 2. Our proposed transfer surrogate model TST-R provides the best performance
with respect to both evaluation measures for the task of hyperparameter tuning.
For both metrics, the smaller the better.

We investigate the performance of the optimization methods also for the
problem of combined algorithm selection and hyperparameter tuning on our
Weka meta-data set. For this experiment, we remove some methods for di�erent
reasons. We remove some weaker methods (Random and TST-M) to improve
the readability. Furthermore, we do not compare to methods, which are using
one Gaussian process, that is trained on the complete meta-data (SCoT and
MKL-GP). The reason for this is that Gaussian processes do not scale to these
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Fig. 3. Our approach TST-R also outperforms the competitor methods for the task of
combined algorithm selection and hyperparameter tuning. Surrogate models that use
Gaussian processes that train over the whole meta-data are not feasible for this data
set [31]. Therefore, we consider I-GP and I-RF with meta-learning initialization.

large meta-data sets (time and memory-wise) [31]. Our approach is learning one
Gaussian process for each data set such that each model only needs to be learned
on a fraction of the data and thus remains feasible. Nevertheless, we compare to
FMLP, the strongest competitor from the previous experiment as well as I-GP
and I-RF. Furthermore, we also compare to I-GP and I-RF with �ve initialization
steps using a strong meta-initialization technique [32]. The results summarized
in Figure 3 are very similar to our previous experiment. TST-R again is best for
both evaluation metrics but FMLP shows to be a strong competitor.

6 Conclusion

In this work, we propose a two-stage transfer surrogate for using meta-knowledge
to accelerate the search with the SMBO framework. We propose to approximate
the hyperparameter response surface of each data set with an individual model.
These individual models are �nally combined at the second stage to estimate
the score of a hyperparameter con�guration. In extensive experiments on two
meta-data sets, we compare our method to numerous competitor methods pub-
lished recently on established machine learning conferences. We show empirically
that our two-stage transfer surrogate model is able to outperform all considered
competitor methods for the task of hyperparameter tuning as well as the task
of combined algorithm selection and hyperparameter tuning.



For future work we are planning to have a deeper look into di�erent ways of
describing data sets. Furthermore, we want to investigate whether it is possible
to add a decay meta-hyperparameter that enables our approach to also work
with typical data set descriptions such as meta-features. Most importantly, we
want to investigate the impact of di�erent kernels for TST on the performance.
Currently, the Matérn 5/2 seems to be a promising candidate.
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