
Sequential Model-free Hyperparameter Tuning

Martin Wistuba
Information Systems and

Machine Learning Lab
University of Hildesheim

Hildesheim, Germany
wistuba@ismll.uni-hildesheim.de

Nicolas Schilling
Information Systems and

Machine Learning Lab
University of Hildesheim

Hildesheim, Germany
schilling@ismll.uni-hildesheim.de

Lars Schmidt-Thieme
Information Systems and

Machine Learning Lab
University of Hildesheim

Hildesheim, Germany
schmidt-thieme@ismll.uni-hildesheim.de

Abstract—Hyperparameter tuning is often done manually but
current research has proven that automatic tuning yields effective
hyperparameter configurations even faster and does not require
any expertise. To further improve the search, recent publications
propose transferring knowledge from previous experiments to
new experiments. We adapt the sequential model-based optimiza-
tion by replacing its surrogate model and acquisition function
with one policy that is optimized for the task of hyperparameter
tuning. This policy generalizes over previous experiments but
neither uses a model nor uses meta-features, nevertheless, out-
performs the state of the art. We show that a static ranking of
hyperparameter combinations yields competitive results and sub-
stantially outperforms a random hyperparameter search. Thus, it
is a fast and easy alternative to complex hyperparameter tuning
strategies and allows practitioners to tune their hyperparameters
by simply using a look-up table. We made look-up tables for two
classifiers publicly available: SVM and AdaBoost. Furthermore,
we propose a similarity measure for data sets that yields more
comprehensible results than those using meta-features. We show
how this similarity measure can be applied to surrogate models
in the SMBO framework and empirically show that this change
leads to better hyperparameter configurations in less trials.

I. INTRODUCTION

Hyperparameters need to be tuned for most machine learn-
ing algorithms and their choice is crucial. The hyperparameter
tuning often decides whether the performance of an algorithm
is just moderate or state of the art, hence, the task of hyperpa-
rameter tuning is as important as developing new algorithms
[1], [2], [3], [4], [5]. Hyperparameter performance depends on
the data set, i.e. hyperparameter configurations that are great
on one data set yield poor performance for another.

Recently, there is an increased interest in the machine
learning community to simplify the hyperparameter tuning
process [1], [4], [5]. Sequential model-based optimization
(SMBO) is one of the current approaches to solve this black
box optimization problem. A surrogate model that tries to learn
the hyperparameter performance is combined with a heuristic
to sequentially try different hyperparameter configurations.

Recent work tries to speed up SMBO by transferring
knowledge about the performance of hyperparameter configu-
rations on other data sets [6], [7]. Even though the scale of the
evaluation metric between data sets can vary considerably, the
goal is to identify regions of hyperparameter configurations
that have good performance across data sets. Bardenet et
al. and Yogatama et al. [6], [7] use a surrogate model that
minimizes the squared error on the meta-training data set
and choose promising hyperparameter configurations using a

heuristic acquisition function (e.g. Expected Improvement [8])
on the predicted response function to find the balance between
exploration and exploitation. Since the surrogate model needs
to be relearned in each SMBO iteration, this might be time-
consuming for large meta-data sets.

A. Our Contributions

There are two problems that are approached in this work:
i) the choice of the hyperparameter configuration depends on a
model optimized for the squared error combined with a simple
heuristic and ii) the similarity between data sets depends on
meta-features. Item i) is a problem because it does not solve
the problem of finding the best hyperparameter configuration
directly and item ii) is a problem because meta-features do
not guarantee that they are descriptive for the data set and
are problem-dependent. We want to overcome these problems
by proposing a model- and meta-feature-free hyperparameter
tuning strategy that is optimized for a hyperparameter tuning
loss. Its benefit is shown empirically in comparison to state
of the art model-based tuning strategies that optimize its
models for regression losses combined with heuristics. Since
a hyperparameter tuning loss was never introduced before,
we propose a quality measure for hyperparameter tuning.
This is firstly used to optimize our method for and secondly
allows better comparison of tuning strategies across papers
compared to strategies such as average rank among tuning
strategies. Because we do not want to rely on meta-features,
a distance measure between data sets that does not depend
on meta-features is proposed. We empirically show that this
new distance measure is able to improve existing hyperparam-
eter optimization strategies by applying and evaluating it on
existing model-based tuning strategies and compare it to the
currently used meta-feature-based distance functions.

II. RELATED WORK

The task of hyperparameter tuning is important and often
decides whether an algorithm has mediocre or state of the art
performance on a task. In the last few years much research
was done on the field of automatic hyperparameter tuning.
Bergstra and Bengio [1] have shown that for algorithms
with low effective hyperparameter dimensionality a random
hyperparameter search can outperform a grid search by using
just a small fraction of trials. Recent state of the art tuning
strategies are using the sequential model-based optimization
(SMBO) [8]. Strategies such as SMAC [9], TPE [10] and
Spearmint [4] sequentially learn the hyperparameter response
function to find a promising next hyperparameter combination.

Current research tries to use knowledge from previous
experiments on other data sets to apply this to future, unknown
data sets. This is either done by an initialization using meta-
knowledge [11] or by learning a surrogate model directly on
the meta-data of the current and past experiments [6], [7].

Furthermore, there also exist strategies to optimize hyper-
parameters that are based on optimization techniques from
artificial intelligence such as tabu search [12], particle swarm
optimization [13] and evolutionary algorithms [14]. Since none
of these strategies use information from previous experiments,
meta-knowledge can be added analogously to the SMBO
counterpart using an initialization [15], [16]. Active Testing
[17] proposes to sequentially try the algorithm configuration
that is likely better than the currently best configuration.

III. BACKGROUND

A. The Formal Setup

A machine learning algorithm Aλ is a mapping Aλ :
D → M where D is the set of all data sets, M is the
space of all models and λ ∈ Λ is the chosen hyperparameter
configuration with Λ = Λ1× . . .×Λp being the p-dimensional
hyperparameter space. The learning algorithm estimates a
model Mλ ∈ M that minimizes a regularized loss function
L (e.g. misclassification rate):

Aλ

(
D(train)

)
:= arg min

Mλ∈M
L
(
Mλ, D

(train)
)
+R (Mλ, λ) .

(1)
Then, the task of hyperparameter optimization is to find the
optimal hyperparameter configuration λ∗ using a validation set
i.e.

λ∗ := arg min
λ∈Λ

L
(
Aλ

(
D(train)

)
, D(valid)

)
︸ ︷︷ ︸

=:fD(λ)

. (2)

To distinguish between the task of hyperparameter optimiza-
tion from model parameter estimation the prefix meta is used.

B. A New Evaluation Metric

It is very common to compare different tuning strategies
either by an average rank between the methods over different
data sets or by the performance of the found hyperparameters
on the data sets directly [6], [7]. Both comparisons make
absolutely sense but come with some disadvantages. First of
all, for both evaluation strategies you can either compare the
plots depending on the number of tries done so far or you
fix the number of tries to T and report the average rank
after T tries. Additionally, the average rank between tuning
strategies changes if you add or remove strategies. Hence, the
values cannot be reused in further publications. Furthermore,
if one tuning strategy has a better average rank than another
it does not necessarily mean that it is also the better strategy
in general. Lets assume there are three data sets where the
best hyperparameter configuration needs to be found. Tuning
strategy A finds the best hyperparameter configuration for two
of them and the worst for the last one. Strategy B finds the
second best hyperparameter configuration for all three data
sets. By average rank, strategy A has a rank of 1.3 compared
to strategy B with rank 1.7. But strategy B provides stable
predictions and is not much worse than strategy A in cases

where A is the better strategy and A was very good on most
of the data sets but really bad on one of them.

We want to overcome both disadvantages. The evaluation
measure should be a number that rewards fast convergence
against the best hyperparameter configuration and is not a
measure that is relative to the performance of other methods.
Thus, it can be easily compared to new methods if they are
applied on the same meta-data set. At this point, one could
think about a ranking measure such as normalized discounted
cumulative gain (NDCG). But we are not interested in finding
the perfect ranking of hyperparameter configurations (this
means first trying the best hyperparameter configuration, then
the second best and so on) but on finding a decent hyperpa-
rameter configuration as soon as possible. Additionally, after
finding the best hyperparameter configuration, the choice of
further hyperparameter configurations should not affect the
metric.

We propose the cumulative average normalized error
(CANE) as a new metric which we define as

CANE (D,ΛT) :=
T∑

t=1

ANE (D,Λt) (3)

where the average normalized error is defined as

ANE (D,ΛT) :=
1

|D|
∑
D∈D

minλ∈ΛT
fD (λ)− fmin

D

fmax
D − fmin

D

(4)

where D is the set of data sets, ΛT = (λ1, . . . , λT) is the
ordered sequence of evaluated hyperparameter configurations
at time T , Λt the ordered subsequence of ΛT until time
t < T , fD (λ) is the error of the hyperparameter configuration
λ on the validation partition of data set D and fmax

D and
fmin
D are the maximum and minimum value of fD using
λ ∈ Λ, respectively. This metric can only be applied if
the hyperparameter tuning is limited to a finite subset of all
possible hyperparameter configurations. In real applications,
the number of hyperparameter configurations is often infinite
but for the evaluation of hyperparameter tuning strategies it
is common that the meta-data is generated by applying a
grid search using a finite set of hyperparameter configurations
that is used on all data sets. In the remainder of this paper,
Λ denotes this finite subset of all feasible hyperparameter
configurations.

CANE is lower bounded by 0 and attains this value only
if in the first try on every data set the best hyperparameter
configuration was chosen. The function value fD (λ) is scaled
between 0 and 1 per data set in Equation 3 to overcome
different scales between data sets.

IV. SEQUENTIAL MODEL-FREE OPTIMIZATION

This section will introduce one of the core contributions of
this work. With A-SMFO we propose a fast and parallelizable
hyperparameter tuning strategy that can be applied easily. This
will be extended to NN-SMFO which uses information about
the similarity between past seen data sets. We propose a new
distance function to measure this similarity.

A. Average SMFO

Our idea is to combine the surrogate model with the
acquisition function. Additionally, we want a method that is
independent of any meta-features. Given a new, unknown data
set, the best you can do is to take that hyperparameter con-
figuration that has proven to be the best on past experiments.
This intuition is extended to arbitrary many tries. Formally, at
time step t the hyperparameter configuration λ is chosen that
improves the performance on the meta-training set the most.
Let Λt be the set of evaluated hyperparameter configurations
at step t. Then, we define the performance of a hyperparameter
configuration λt at t as

perf (λt,Λt−1,D) =
∑
D∈D

min
λ′∈Λt−1∪{λt}

{rD (λ′,Λ)} (5)

where rD (λ,Λ) is the rank of λ on data set D over all
hyperparameter configuration in Λ. Again, Λ is the finite set
of feasible hyperparameter configurations as defined above
that were evaluated on D ∈ D in previous experiments. The
ranking for a new data set is obviously unknown. Then, at each
time step t, f (argminλ∈Λ perf (λ,Λt−1,D)) is evaluated.

Algorithm 1 CANE Optimal Sequence
Input: Set of feasible hyperparameter configurations Λ, set of

data sets D, number of maximal tries T .
Output: Sequence of hyperparameter configurations to eval-

uate.
1: Λ0 ← ()
2: for t = 1 to T do
3: λt ← argminλ∈Λ perf (λ,Λt−1,D)
4: Λt ← (Λt−1, λt)
5: if 1

|D|
∑

D∈D minλ∈Λt rD (λ,Λ) = 1 then
6: return Λt

7: return ΛT

Algorithm 1 will find the best hyperparameter configurations
for the meta-training set by sequentially selecting the hy-
perparameter configurations that minimize Equation 5 given
Λ. The stopping criterion in Line 5 is fulfilled as soon as
Λt contains all hyperparameter configurations that were best
on the data sets D ∈ D. The resulting sequence ΛT is
optimal for the meta-training set but not necessarily for the
meta-testing set. Actually, it is likely that more trials are
needed on meta-test than on meta-train resulting in a sequence
returned by Algorithm 1 that is too short. To overcome this
problem, the final tuning strategy is given in Algorithm 2.
The idea is to optimize the CANE on meta-train in the first
iteration. In the next iterations, CANE is optimized by not
considering previously chosen hyperparameter configurations
in the evaluation and in the pool of feasible candidates Λ. This
is equivalent to optimizing for rank t in iteration t instead of
optimizing for rank 1.

B. Nearest Neighbor SMFO

Average SMFO acquires hyperparameter configurations
only dependent on the meta-training set Dtrain. This means,
there is a fixed sequence of hyperparameter configurations
to evaluate and hence this method can be parallelized and
implemented easily. Prediction can be done in constant time,
memory consumption is linear in the number of feasible

Algorithm 2 Average SMFO
Input: Set of feasible hyperparameter configurations Λ, set of

data sets D, number of maximal tries T .
Output: Sequence of hyperparameter configurations to eval-

uate.
1: Λ̂← ()
2: while T > 0 do
3: Λ′ ← Algorithm1

(
Λ \ Λ̂, T,D

)
4: T ← T − |Λ′|
5: Λ̂←

(
Λ̂,Λ′

)
6: return Λ̂

hyperparameter configurations and this static sequence of hy-
perparameter configurations can be shared among researchers
and practitioners. Nevertheless, Average SMFO has one big
disadvantage. It does not consider the valuable evaluations
on the current data set Dtest. Therefore, Average SMFO is
extended to Nearest Neighbor SMFO (NN-SMFO) to over-
come this problem. NN-SMFO is not considering every data
set when predicting the best hyperparameter configuration but
the k most similar. The distance function between Dtest and
any other data set D ∈ D is inspired by the Kendall tau
rank correlation [18] coefficient. Assuming that the ranking
of hyperparameter configurations contains solely concordant
or discordant pairs and ignoring the constants, the resulting
KTRC distance function is

KTRC(D1, D2,Λt) :=

∑
λ1∈Λt

∑
λ2∈Λt

s (λ1, D1, λ2, D2)

(|Λt| − 1) |Λt|
(6)

Λt := Λ
(D1)
t ∩ Λ

(D2)
t

s (λ1, D1, λ2, D2) := I (fD1 (λ1) > fD1 (λ2)

⊕fD2 (λ1) > fD2 (λ2))

where ⊕ is the symbol for an exclusive or and Λ
(D)
t is the

set of hyperparameter configurations λ ∈ Λ where fD (λ) is
already evaluated for data set D ∈ D, fD being the response
function of data set D.

To apply these changes, the data sets in D before Line 3
in Algorithm 1 needs to be reduced to the k most similar data
sets to Dtest.

V. ON A DISTANCE MEASURE BETWEEN DATA SETS

The current state of the art models the similarity between
data sets either by learning it implicitly using meta-features
[6], [9] or modelling them explicitly using the Euclidean
distance on the meta-features [16], [7]. What is meant with
similar data sets is that they behave similarly with respect
to the hyperparameter configurations. This means, that two
similar data sets have a similar ranking of hyperparameter
configurations. Measuring this ranking using a rank correlation
metric such as proposed in Equation 6 is actually a natural
choice. Otherwise, the similarity cannot be estimated if no
evaluations are observed. We claim that few evaluations are
enough to approximate the true rank correlation such that
this distance measure is nevertheless more expressive than
alternatives such as distance functions based on meta-features.

−0.2 −0.1 0.0 0.1 0.2

−
0
.0

5
0
.0

0
0
.0

5
0
.1

0
Metric MDS Meta Features

Coordinate 1

C
o
o
rd

in
a
te

 2

A9A

automobile

bands

coil2000

ijcnn1

letter

usps

wdbc

−0.2 0.0 0.2 0.4 0.6

−
0
.1

0
0
.0

0
0
.1

0

Metric MDS Rank Correlation

Coordinate 1

C
o
o
rd

in
a
te

 2

A9A

automobile/usps

bands

coil2000

ijcnn1/letter

wdbc

Fig. 1. Metric multidimensional scaling of a distance metric using Euclidean distance on the meta-features (left) and Equation 6 using only the first four
hyperparameter configurations recommended by Average SMFO (right). The shown response surfaces are that from a AdaBoost classifier, the meta-features used
are described in Section VI.

Figure 1 supports this claim. In the left plot, it shows the
multidimensional scaling (MDS) of the distance matrix using
the Euclidean distance on the meta-features. The data set
names indicate the position in the space, the near-by little plots
the (hidden) response function. The response function in this
case maps two hyperparameters (x and z-axis) to the f value,
in this case the classification accuracy. One can see that in
some cases this similarity measure works, like in the cases of
letter and ijcnn1 but it can also fail. For instance, usps and
coil2000 are very close to each other but the hyperparameter
configurations are almost ranked contrary.

In the right plot the KTRC distance function defined in
Equation 6 is used. The distance is computed using only four
hyperparameter configurations, i.e. the best four recommended
by Average SMFO. The message is that only little information
about the ranking can already provide a good clustering.
Clearly, coil2000 is identified as completely different to any
other data set and the reader may see for herself that the
distances are more intuitive just from visual inspection.

VI. EXPERIMENTAL EVALUATION

The tuning strategies proposed in Section IV are arguably
simple and still competitive. We are comparing them to state
of the art hyperparameter tuning strategies (competitors are
published on top conferences, e.g. NIPS 2012, ICML 2013,
AISTATS 2014). Empirically, we show that they can outper-
form those strategies and have the capability to scale to big
meta-data.

A. Experimental Setup

To compare different hyperparameter tuning strategies, we
used 25 classification data sets randomly chosen from the UCI
repository to create two meta-data sets. We merged existing
splits, shuffled all instances and created new splits where 80%
was used as train and 20% as test, respectively.

One meta-data set was created as proposed by [6]
using AdaBoost with decision products as weak learn-
ers [19]. This results into two hyperparameters, the num-
ber of iterations I and the number of product terms
M . The target measure is the classification error. Val-
idation errors are precomputed on a grid with values

I ∈
{
2, 5, 10, 20, 50, 100, 200, 500, 103, 2 · 103, 5 · 103, 104

}
and M ∈ {2, 3, 4, 5, 7, 10, 15, 20, 30} resulting into 108 meta-
instances per data set.

The second meta-data set was created using a support
vector machine [20]. In this case the hyperparameters
are the chosen kernel (linear, polynomial or Gaussian),
the trade-off between margin and training error C and
kernel specific hyperparameters such as the degree of the
polynomial kernel d and the width γ of the Gaussian kernel.
Again, the validation errors are precomputed on a grid
with values C ∈

{
2−5, . . . , 26

}
, d ∈ {2, . . . , 10} and γ ∈{

10−4, 10−3, 10−2, 0.05, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 102, 103
}

resulting into 288 meta-instances per data set.

Meta-features are a vital part in most of the competitor
strategies. Therefore, we added the meta-features to our meta-
data that were also used by [6], [7]. First, we are extracting
the number of training instances n, the number of classes c
and the number of predictors p. The final meta-features are c,
log (p) and log (n/p) scaled to [0, 1].

The meta-data sets are available on our supplementary web-
site [21]. It provides also the source code, further experiments
(e.g. runtime), plots and information.

B. Tuning Strategies

We are comparing our proposed methods with five different
competitor strategies. One is random search (Random) [1],
the only fully parallelizable strategy besides A-SMFO. Then
we compare to different variations of the SMBO framework.
I-GP is using a Gaussian process with squared-exponential
kernel as a surrogate model and does not consider any meta-
knowledge [10]. Surrogate Collaborative Tuning (SCoT) [6]
and Gaussian process with multi kernel learning (MKL-GP)
[7] are using surrogate models that consider meta-knowledge.
Furthermore, we compare to SMAC++, a variation of SMAC
[9] that also considers meta-knowledge during the optimization
process. To empirically evaluate the influence of the distance
function between data sets, we propose Rank Correlation-
based Gaussian Process (RC-GP). This is a variation of MKL-
GP but instead of using the Euclidean distance of meta-
features to estimate the similarity between data sets, we use the
distance function defined in Equation 6. Optimal is an artificial

Optimal

NN SMFO

Random

SMAC++

2

4

6

8

0 20 40 60
Number of Trials

A
v
e

ra
g

e
 R

a
n

k

Random
I GP
SMAC++
SCoT
MKL GP

RC GP
A SMFO
NN SMFO
Optimal

AdaBoost

Optimal

NN SMFO

Random

MKL GP

RC GP

2

4

6

8

0 20 40 60
Number of Trials

A
v
e

ra
g

e
 R

a
n

k

SVM

Fig. 2. Development of the average rank among different hyperparameter tuning strategies with increasing number of trials (best viewed in color or online
[21]).

tuning strategy that always evaluates the best hyperparameter
configuration and is added to some plots for orientation

C. Results

Before interpreting the results, the hypotheses made before
the experiments are recalled: 1) The strategies proposed in
Section IV are better because they are optimized directly for
CANE. 2) The KTRC distance measure proposed in Equation
6 provides better information about the distance between data
sets than a distance function based on the meta-features.

To confirm the first hypothesis, consider Figure 2. It shows
the development of the average rank among different hyperpa-
rameter tuning strategies.1 On the AdaBoost meta-data set all
tuning strategies but Random and SMAC++ are close together.
Nevertheless, NN-SMFO is one of the best. Especially in the
beginning, a larger gap to the other approaches is recognizable.
Starting at iteration 40, MKL-GP seems to become very good
but this is misleading as the reader will see in Figure 3. The
improvement here is less than one may assume, improving
the classification error on average at the third decimal place.
The good performance of NN-SMFO becomes substantial on
the SVM meta-data set. Here it takes about 50 trials until any
other tuning strategy gets even close to the performance of NN-
SMFO. A-SMFO performs worse with respect to the average
rank than NN-SMFO but still performs well if you consider
that it is a static sequence and does not use any information
about the data set that is currently being investigated. We want
to remark that performance of the tuning strategies will always
converge against the same value since at some point they have
tried all feasible hyperparameter configurations.

Having a look at the development of the average normal-
ized error in Figure 3 gives the reader the impression how
fast the tuning strategies actually converge against the best
hyperparameter configuration on average. One can see that
both, A-SMFO and NN-SMFO, are converging considerably
faster than the other strategies. Again, this marked difference
is more substantial on the SVM meta-data set. Our assumption
is that the SVM meta-data set is more difficult because it
contains more than twice that many feasible hyperparameter
configurations and the SVM has more hyperparameters to tune.

1To facilitate the readability, all plots can be found with an arbitrary subset
of tuning strategies on the supplementary website [21].

Finally, also the results of the third metric presented in
Table I lead to the same conclusions.

To validate the second hypothesis, we will have a closer
look at the tuning strategies MKL-GP (yellow) and RC-GP
(dark blue) because the only difference between those two
is the distance function. Again, we first compare them with
respect to the average rank. On the AdaBoost meta-data set,
the difference is little showing a small advantage for MKL-
GP. On the SVM data set the difference is more substantial.
Here, RC-GP can show that the KTRC distance function is
supporting.

Comparing RC-GP and MKL-GP with respect to the
average rank does not lead to an unambiguous conclusion.
Things look entirely different when having a look at the
results with respect to the average normalized error. The
average convergence of RC-GP to the best hyperparameter
configuration is considerably faster than the convergence of
MKL-GP. Also, for the last evaluation metric CANE, one can
see that RC-GP provides better results than MKL-GP.

VII. CONCLUSION

We introduced three new hyperparameter tuning strategies
and demonstrated that hyperparameter tuning is also possible
without surrogate models and showed empirically that it is
currently even better. A-SMFO has very nice properties. It
is parallelizable which is only possible for grid search and
random search while all other tuning strategies are not trivially
parallelizable. Additionally, it only depends on the training
meta-data and not on the currently evaluated data set. There-
fore, we made the best predicted ranking for the models SVM
and AdaBoost accessible to the community [21]. This offers
practitioners a static hyperparameter tuning strategy that has
proven to be very competitive compared to the state of the
art and easy to apply for future experiments. Another nice
property is that it makes results reproducible. Reproducing
random search is not exactly possible because often only the
distribution over the hyperparameters is made public and not
which hyperparameter configurations are finally chosen.

NN-SMFO is an improvement over A-SMFO and can
be used to further improve the results. It was compared
to important state of the art competitor strategies and has
empirically shown to be effective.

MKL GP

RC GP

NN SMFO

0.000

0.025

0.050

0.075

0.100

0 20 40 60
Number of Trials

A
v
e

ra
g

e
 N

o
rm

a
liz

e
d

 E
rr

o
r

Random
I GP
SMAC++
SCoT

MKL GP
RC GP
A SMFO
NN SMFO

AdaBoost

MKL GPRC GP

NN SMFO

0.000

0.025

0.050

0.075

0.100

0 20 40 60
Number of Trials

A
v
e

ra
g

e
 N

o
rm

a
liz

e
d

 E
rr

o
r

Random
I GP
SMAC++
SCoT

MKL GP
RC GP
A SMFO
NN SMFO

SVM

Fig. 3. Development of the average normalized error with increasing number of trials (best viewed in color or online [21]).

TABLE I. SUMMARY OF THE CANE OF THE TUNING STRATEGIES ON BOTH META-DATA SETS. NUMBER IN BRACKETS INDICATE THE RANKING ACROSS
THE STRATEGIES. THE STRATEGIES INTRODUCED IN THIS PAPER ARE BOLD.

Random I-GP SMAC SCoT MKL-GP RC-GP A-SMFO NN-SMFO
AdaBoost 0.089 (6) 0.065 (3) 0.085 (5) 0.120 (8) 0.119 (7) 0.071 (4) 0.047 (2) 0.040 (1)

SVM 0.280 (7) 0.254 (5) 0.172 (4) 0.115 (3) 0.361 (8) 0.259 (6) 0.082 (2) 0.053 (1)

ACKNOWLEDGMENT

The authors gratefully acknowledge the co-funding of their
work by the German Research Foundation (DFG) under grant
SCHM 2583/6-1.

REFERENCES

[1] J. Bergstra and Y. Bengio, “Random search for hyper-parameter
optimization,” J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

[2] A. Coates, H. Lee, and A. Ng, “An analysis of single-layer networks
in unsupervised feature learning,” in Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, ser.
JMLR Workshop and Conference Proceedings, G. Gordon, D. Dunson,
and M. Dudk, Eds., vol. 15. JMLR W&CP, 2011, pp. 215–223.

[3] N. Pinto, D. Doukhan, J. J. DiCarlo, and D. D. Cox, “A high-throughput
screening approach to discovering good forms of biologically inspired
visual representation,” PLoS Computational Biology, vol. 5, no. 11, p.
e1000579, 2009, PMID: 19956750.

[4] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. Burges, L. Bottou,
and K. Weinberger, Eds. Curran Associates, Inc., 2012, pp.
2951–2959.

[5] C. Thornton, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Auto-weka:
Combined selection and hyperparameter optimization of classification
algorithms,” in Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’13.
New York, NY, USA: ACM, 2013, pp. 847–855.

[6] R. Bardenet, M. Brendel, B. Kégl, and M. Sebag, “Collaborative hyper-
parameter tuning,” in Proceedings of the 30th International Conference
on Machine Learning (ICML-13), S. Dasgupta and D. Mcallester, Eds.,
vol. 28, no. 2. JMLR Workshop and Conference Proceedings, May
2013, pp. 199–207.

[7] D. Yogatama and G. Mann, “Efficient transfer learning method for auto-
matic hyperparameter tuning,” in International Conference on Artificial
Intelligence and Statistics (AISTATS 2014), 2014.

[8] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” J. of Global
Optimization, vol. 13, no. 4, pp. 455–492, Dec. 1998.

[9] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-based
optimization for general algorithm configuration,” in Proceedings of the
5th International Conference on Learning and Intelligent Optimization,
ser. LION’05. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 507–523.

[10] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
for hyper-parameter optimization,” in Advances in Neural Information
Processing Systems 24, J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K. Weinberger, Eds. Curran Associates, Inc., 2011,
pp. 2546–2554.

[11] M. Feurer, J. T. Springenberg, and F. Hutter, “Using meta-learning to
initialize bayesian optimization of hyperparameters,” in ECAI workshop
on Metalearning and Algorithm Selection (MetaSel), 2014, pp. 3–10.

[12] G. Cawley, “Model selection for support vector machines via adaptive
step-size tabu search,” in Artificial Neural Nets and Genetic Algorithms,
V. Kůrkov, R. Neruda, M. Krn, and N. Steele, Eds. Springer Vienna,
2001, pp. 434–437.

[13] X. C. Guo, J. H. Yang, C. G. Wu, C. Y. Wang, and Y. C. Liang,
“A novel ls-svms hyper-parameter selection based on particle swarm
optimization,” Neurocomput., vol. 71, no. 16-18, pp. 3211–3215, Oct.
2008.

[14] F. Friedrichs and C. Igel, “Evolutionary tuning of multiple svm
parameters,” Neurocomput., vol. 64, pp. 107–117, Mar. 2005.

[15] T. A. Gomes, R. B. Prudêncio, C. Soares, A. L. Rossi, and A. Carvalho,
“Combining meta-learning and search techniques to select parameters
for support vector machines,” Neurocomputing, vol. 75, no. 1, pp. 3
– 13, 2012, brazilian Symposium on Neural Networks (SBRN 2010)
International Conference on Hybrid Artificial Intelligence Systems
(HAIS 2010).

[16] M. Reif, F. Shafait, and A. Dengel, “Meta-learning for evolutionary
parameter optimization of classifiers,” Machine Learning, vol. 87,
no. 3, pp. 357–380, 2012.

[17] R. Leite, P. Brazdil, and J. Vanschoren, “Selecting classification al-
gorithms with active testing,” in Proceedings of the 8th International
Conference on Machine Learning and Data Mining in Pattern Recog-
nition, ser. MLDM’12. Berlin, Heidelberg: Springer-Verlag, 2012, pp.
117–131.

[18] M. G. Kendall, “A New Measure of Rank Correlation,” Biometrika,
vol. 30, no. 1/2, pp. 81–93, Jun. 1938.

[19] B. Kégl and R. Busa-Fekete, “Boosting products of base classifiers,” in
Proceedings of the 26th Annual International Conference on Machine
Learning, ser. ICML ’09. New York, NY, USA: ACM, 2009, pp.
497–504.

[20] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Transactions on Intelligent Systems and Technology,
vol. 2, pp. 27:1–27:27, 2011, software available at http://www.csie.ntu.
edu.tw/∼cjlin/libsvm.

[21] M. Wistuba. (2015, Aug) Supplementary website: http://www.hylap.
org/publications/Sequential-Model-free-Hyperparameter-Tuning.

