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Abstract. Move prediction systems have always been part of strong Go
programs. Recent research has revealed that taking interactions between
features into account improves the performance of move predictions. In
this paper, a factorization model is applied and a supervised learning al-
gorithm, Latent Factor Ranking (LFR), which enables to consider these
interactions, is introduced. Its superiority will be demonstrated in com-
parison to other state-of-the-art Go move predictors. LFR improves accu-
racy by 3% over current state-of-the-art Go move predictors on average
and by 5% in the middle- and endgame of a game. Depending on the
dimensionality of the shared, latent factor vector, an overall accuracy of
over 41% is achieved.
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1 Introduction

Since the early days in research of Computer Go, move prediction is an essential
part of strong Go programs. With the application of Upper Confidence bounds
applied to Trees (UCT) in 2006 [1, 2], which improved the strength of Go pro-
grams a lot, it became even more important. Go programs using UCT infer from
semi-random game simulations which move is a good candidate. The policies
for choosing the next move during the simulations are implied by predicting a
human expert’s move. Due to the fact that an average Go game has 250 turns
with 150 possible move choices on average, the move position evaluation does not
only need to be accurate but also fast to compute to achieve a positive impact
on the strength of the Go program.

State-of-the-art move predictors are ranking moves on the board by the use
of different features. Upfront, the strength of each feature is learned with var-
ious supervised learning algorithms. The prediction can be improved by using
additional features, but as seen in [3, 4] it can also be improved by considering
the impact of feature interactions.

The contribution of this paper are fourfold.

– A supervised move ranking algorithm for Go is presented which is by now
the most accurate. Additionally, it is easy to implement and fast to compute.
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– The model of Factorization Machines [5] is transfered from the domain of
recommender systems to move prediction in Go.

– A new update rule for ranking with Factorization Machines is presented.
– Deeper insights into Go move features and its interactions are given and in

detail investigated.

2 Related Work

Most move predictors for Go are either using Neural Networks [6, 7] or are esti-
mating ratings for moves using the Bradley Terry (BT) model or related models
[3, 4, 8]. Latter mentioned approaches model each move decision as a competi-
tion between players, the move chosen by the human expert player is then the
winning player and its value is updated accordingly.

Another possibility to divide the Go move predictors into two classes is how
they consider interactions between features. There are two variants, one models
the full-interaction of all features [3, 9] and the others do not consider them at
all [4, 6, 8].

The first mentioned approach which is modelling all interactions has the ad-
vantage that more information is taken into account. The disadvantage is that
this approach does not scale because the amount of training data needed in-
creases exponentially with the number of features. The latter approach does not
have this disadvantage but therefore also has no information about the feature
interactions. In practice, approaches not considering feature interactions at all
proved to be more accurate. Stern’s [3] full-interaction model used a learning
set of 181,000 games with 4 feature groups but only predicted 34% of the moves
correctly. Using the same approach with no interaction, Wistuba et al. [4] has
shown that easily 9 feature groups can be used and, using a learning set of only
10,000 games, 37% of moves were predicted correctly. Ibidem, it was tried to
combine advantages of both approaches by using an approach without feature
interaction and adding a special feature that represented a combination of few
features. It was shown that this can improve the prediction quality significantly.

The contribution of this work is to introduce a method which cannot be
sorted into the before mentioned categories. It introduces an algorithm for the
move prediction problem of Go that is combining both advantages by presenting
a model which learns the strength of interactions between features but still scales
with the number of features.

3 Game of Go

The game of Go is one of the oldest two player board games which was probably
invented around the 4th century B.C. in China. It is played on a board with
n × n intersections (n is usually 9, 13 or 19). The players move alternately. At
each turn the player has the option to place a stone at an intersection or to
pass. Enemy stones that are surrounded by own stones will be removed from
the board. The aim of the game is to capture enemy stones and territory. The
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game ends after both players have passed, the winner is then the one with more
points which are calculated by the number of captured stones and the size of the
captured territory. Further informations can be found at http://gobase.org.

3.1 Technical Terms

Finally some technical terms in Go are explained to make it possible to under-
stand the features used in this work.

Ko The ko rule is a restriction on the legal moves. Moves that change the board
state to the same state like two moves before are forbidden.

Chain The connected string of stones of same color.
Liberty An empty intersection next to a chain is called liberty.
Atari A chain is in atari if there is only one liberty left, so that the opponent

can capture the chain within one move.
Capture If you place your stone in such a way that the enemy chain has no

liberties left. This chain will be removed from the board and each stone is
called a prisoner and count as one point each.

Illegal move A move is illegal if it either breaks the ko rule, places a stone at
an intersection that is already occupied or it captures an own chain.

3.2 Complexity

Go is one of the last board games not being mastered by computer programs.
Actually, Go programs are still far away from beating professional players, only
playing on the level of stronger amateurs on the 19×19 boards. One of the reasons
is the high complexity of Go. The upper bound of possible board positions is
3361 ≈ 10170 and still 1.2% of these are legal [10]. Comparing Go with Chess, not
only the board size is bigger (19x19 vs. 8x8) but also the number of potential
moves. The average number of potential moves per turn in Go is about 150,
Chess has only a few dozen. Additionally, no static heuristic approximating the
minimax value of a position was found so far. That is, it is not possible to apply
depth limited alpha-beta search with reasonable results. Concluding, even from
a perspective of complexity Go is by far more difficult than Chess. A perfect
strategy for n×n Chess only requires exponential time but Go is PSPACE-hard
[11] and even subproblems a player has to deal with in every turn has proven to
be PSPACE-complete [12].

4 Move Prediction using Feature Interactions

This section first introduces the terminology and a model which is capable to
represent interactions between features. Then, the Latent Factor Ranking algo-
rithm is presented in Section 4.3. Finally, Section 4.4 describes the features used
for the experiments.
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4.1 Terminology

This work will use the terminology introduced in [4]. A single game in Go is
formalized as a tuple G := (S,A, Γ, δ) where S := Cn×n is the set of possible
states and C := {black, white, empty} is the set of colors. The set of actions

A := {1, . . . , n}2 ∪ {pass} defines all possible moves and Γ : S → P (A) is the
function determining the subset of legal moves Γ (s) in state s. δ : S × A →
S∪{∅} is the transition function specifying the follow-up state for a state-action
pair (s, a), where δ (s, a) = ∅ iff a /∈ Γ (s). In the following, a state-action pair
(s, a) will be abstracted by m features represented by x ∈ Rm. Even though x is
only the abstracted state-action pair, in the following for notational convenience
it will anyways be called state-action pair.

In this work only binary features xi ∈ {0, 1} are used and so the set of active
features in (s, a) is defined as I (x) := {i : xi = 1}.

Given a training set D of move choice examples

Dj :=
{
x(1) = x (sj , a1) , . . . , x(|Γ (sj)|) = x

(
sj , a|Γ (sj)|

)}
,

it is assumed without loss of generality that x(1) is always the state-action pair
chosen by the expert.

4.2 Problem Description and Model

The move prediction problem in Go is defined given a state s, to predict the
action a ∈ Γ (s) that is chosen by the expert player. Due to the fact that there
might be several similar good moves and the application of move prediction
in the UCT algorithm, a ranking of the legal moves is searched such that the
expert move is ranked as high as possible. Therefore, a ranking function is sought

that minimizes
∑
Di∈D

∑rank(a1)
j=1

1
j , where rank (a1) is the ranking of the action

chosen by the human expert in the decision problem Di.
Like other contributions on the topic of move prediction in Go, this work also

is a supervised method that estimates the strength of different features based
on a set of games between strong human players. The big difference is that
additionally the strength of the interaction of two features is considered. The
model of Factorization Machines [5] is applied which is defined as

ŷ (x) := w0 +

m∑
i=1

wixi +

m∑
i=1

m∑
j=i+1

vTi vjxixj .

Because in this work only binary features are used, a notation-wise simpler model
is applied

ŷ (x) := w0 +
∑
i∈I(x)

wi +
∑

j∈I(x),i6=j

θi,j

 ,

with

θi,j :=
1

2
vTi vj .
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where wi is the influence of the feature i independent of all other occurring
features, whereas θi,j is the interaction between features i and j. The matrix
V ∈ Rm×k implies the matrix Θ ∈ Rm×m and is the reason why LFR does not
struggle with the problem of full-interaction models i.e. the lack of examples. The
dimension k � m has to be chosen by the user. The greater k, the more potential
information can be stored in the interaction vectors vi. The k latent factors per
feature will then be shared and thus scalability problems are avoided when the
number of features increases while the number of feature values is kept low. As
shown in Figure 5(a), already for very small k LFR seems to be optimal. Thus,
k can be treated as a constant and only Θ (m) values are needed. Nevertheless,
for computational reasons, which are very important for Go playing programs
based on UCT, it makes sense to precompute the matrix Θ.

We want to continue the discussion from Section 2 and explain the counterin-
tuitive fact that no-interaction models achieve better results than full-interaction
models. Also, we want to show why the model for LFR is capable of achieving
better results.

There are various learning techniques using these models but they have the
way how state-action pairs are ranked in common. No-interaction models learn
weights wi for each feature i whereas full-interaction models learn weights wI(x).

Then, all legal state-action pairs x(j) are ranked in descendend order of its pre-
dicted strengths

∑
i∈I(x(j)) wi respectively wI(x(j)). So far, it still looks like the

full-interaction model considers more information. But useful values for wI(x(j))
can only be estimated if I

(
x(j)

)
was seen at least once in the learning set. Thus,

in practice, both kind of models do not have the same features to predict a
state-action pairs strength. Normally, the no-interaction models have access to
larger shape features which are very predictive and this additional information
is worth more than the interaction.

The model of LFR is capable of using the same features as no-interaction
models but still can consider feature interactions so that in this case indeed
more information is used.

4.3 Latent Factor Ranking

The Latent Factor Ranking (LFR) is defined as follows. Each state-action pair
is labeled with

y (x) =

{
1 if x was chosen in the example

0 otherwise
.

For the estimation of vector w and matrix Θ a stochastic gradient descent with
l2 regularization is applied. The gradients are given as

δ

δφ
ŷ (x) =


1 if φ = w0

1 if φ = wi and i ∈ I (x)∑
j∈I(x)\{i} vi,f if φ = vi,f and i ∈ I (x)

0 otherwise
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Instead of taking every state-action pair x into account, only those pairs with
rank at least as high as the pair chosen by the expert i.e. ŷ (x) ≥ ŷ

(
x(1)

)
are

used. The idea behind this is that an implicit transitive relation between features
is achieved, and moves that are not responsible for wrong rankings do not need
to be touched.

Vector w is initialized with 0, V is initialized with values randomly drawn
from the normal distribution with mean 0 and standard deviation 0.1. Learning
rate α and regularization parameters λw and λv need to be estimated upfront as
well as the dimension k. Algorithm 1 describes LFR in detail. In the following
LFR with a specific dimension k is called LFRk. During the experiments, con-
vergence was assumed when the prediction accuracy did not improve within the
last three iterations.

Algorithm 1 Latent Factor Ranking

Input: Training set D with move decisions Dj =
{
x(1), x(2), . . . , x(|Γ(sj)|)

}
in state

sj where x(1) was chosen by the expert.
Output: V and w necessary to predict future moves.
w ← 0, vif ∼ N (0, 0.1)
while not converged do

for all Dj ∈ D do
for all x ∈ Dj do

if ŷ (x) ≥ ŷ
(
x(1)

)
then

∆y ← ŷ (x)− y (x)
w0 ← w0 − α ·∆y
for all i ∈ I (x) do
wi ← wi − α (∆y + λwwi)
for f = 1 to k do

vi,f ← vi,f − α
(
∆y δ

δvi,f
ŷ (x) + λvvi,f

)

4.4 Features

In Go two different kinds of features are distinguished, shape features and non-
shape features. Shape features take the shape around a specific intersection on
the board into account, non-shape features are every other kind of features in
a move situation you can imagine. How shapes are extracted, harvested and
represented is explained very well in [3].

In this work the same features are used as in [4]. That is, a feature subset of
those proposed in [8] are used in order to allow a comparison to further prediction
models. Since [4] does not define the features explicitly, this is caught up here.
Features are divided into nine groups, from each group at most one feature is
active for a given state-action pair, first mentioned features have higher priorities
within the feature group. All features are binary because the approaches LFR is
compared to cannot deal with other features types.
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Fig. 1. The shapes are harvested as proposed in [3]: Fourteen circle shaped, nested
templates are used which are regarded to be invariant to rotation, translation and
mirroring. The shape template of size 14 considers the full board state.

1. Pass Passing in case of the last move was 1) no pass or 2) a pass.
2. Capture Capturing an enemy chain such that 1) an own chain is no longer

in atari, 2) previous move is recaptured, 3) a connection to the previous
move is prevented or 4) any other capture.

3. Extension Stone is placed next to an enemy chain such that it is in atari.
4. Self-atari Placing a stone such that your own chain is in atari.
5. Atari Placing a stone such that enemy chain is in atari when there is 1) a

ko or 2) no ko.
6. Distance to border is one, two, three or four.
7. Distance to previous move is 2, . . . , 16,≥ 17 using distance measure d (∆x,∆y) =
|∆x|+ |∆y|+ max {|∆x| , |∆y|}

8. Distance to move before previous move is 2, . . . , 16,≥ 17 using distance
measure d (∆x,∆y) = |∆x|+ |∆y|+ max {|∆x| , |∆y|}

9. Shape Can be any shape that appeared at least ten times in the training set
using the templates shown in Figure 1.

5 Experiments

In the following, at first LFR is compared to other Go move prediction algorithms
and it is shown that it is significantly better for k. It will be shown that the
interactions have a positive impact especially in situations where no big shapes
are matched (shape sizes greater than 4) which finally results in the observed
lift. Finally, the features and its interactions are discussed.

For the experiments a set of 5,000 respectively 10,000 games (i.e. approxi-
mately 750,000 respectively 1,500,000 move decisions) from the KGS Go Server1

was used. These games are without a handicap and were played between strong
human amateurs i.e. both are ranked at least 6d or at least one has a rank of 7d.
As mentioned before, shapes were used if they occurred at least 10 times in the

1 http://www.gokgs.com/



8

training set. In this way, 48,071 respectively 94,030 shapes were harvested and
used for the learning process. Hyperparameters for LFR were estimated on a dis-
joint validation set and sought on a grid from 0 to 0.01 with step size 0.001. The
learning rate α = 0.001 was selected. For LFR1 the regularization parameters
λw = 0.001 and λv = 0 were chosen, while for LFR5 λw = 0.001 and λv = 0.002
are optimal. All experiments were made on the 10k learning set otherwise explic-
itly stated. LFR is compared to Coulom’s Minorization Maximization [8] (MM)
as well as two further algorithms introduced in [4]: These are on the one hand an
improvement of Stern’s algorithm [3] now capable to deal with arbitrary many
features, the Loopy Bayesian Ranking (LBR), and a variant of Weng’s Bayesian
Approximation Method [13] based on the Bradley Terry model adapted to the
Go move prediction problem, the Bayesian Approximation Ranking (BAR). The
experiments are made on a testing set of 1,000 games which are disjoint from
the training and validation set. The accuracy is defined as the average accuracy
of the first 12 game phases, where a game phase consists of 30 turns.
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(a) Cumulative prediction accuracy in re-
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Fig. 2. The cumulative prediction accuracy in respect to the expert move rank.

The resulting prediction quality of the aforementioned algorithms is depicted
in Figure 2(a). Figure 2(b) shows this in detail by providing the results sub-
stracted by the results of BAR. The expert move rank is the rank assigned to
the move chosen by the expert player in the actual game. Full-LFR1 is LFR1
which considers all state-action pairs for the update. Its results justify the choice
of considering only state-action pairs x(i) where ŷ

(
x(i)
)
≥ ŷ

(
x(1)

)
because Full-

LFR performs poor for high expert move ranks. As can be seen, LFR outper-
forms the other algorithms significantly, especially for low expert move ranks.
For FPR5 this holds even up to 18. Especially the lift for very low expert move
ranks is notable.
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Table 1. Probability for predicting the move chosen by the expert for different learning
set sizes

Training set size MM LBR BAR LFR1 LFR5

5,000 37.00% 36.36% 34.24% 38.60% 39.96%
10,000 37.86% 37.35% 35.33% 39.78% 40.90%

Additionally, Table 1 compares the different prediction algorithms on two
different sized training sets. Again, LFR outperforms every other algorithm.
Finally, Figure 5(a) shows the predicting performance of LFR with growing k.
The accuracy increases fast but then converges. It can be assumed that for k > 10
there will be no big improvements.

The intuition of learning move strengths by considering interactions between
features was to achieve a higher prediction accuracy for cases where only smaller
shapes are matched. Smaller shapes have less information and usually are more
often matched in the later game phases. This goal is achieved by LFR as seen in
Figure 3(a). The prediction accuracy in the first game phases (each game phase
consists of 30 turns) is higher than the average accuracy due to the fact that
there are standard opening moves. These can be learned very accurately by the
shape features because most of these moves were harvested with very large shape
sizes. This is also the reason why LFR is not better than the other algorithms
because the shape features simply dominate all the others. Then, starting in
game phase 6, when smaller shapes are matched and the other features gain
more influence, the impact of the interactions becomes visible. Accuracy of LFR
is then up to more than 5% better than all other approaches.
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Fig. 3. LFR is better in ranking moves where only small shapes are available.
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Figure 3(b) also supports the claim of successfully estimating the right move if
only small shapes are matched. It shows the prediction accuracy in respect of the
matched shape size of the expert move. For shape sizes 5-13 there is no significant
change in comparison to the other algorithms, for full board shapes it is even
worse. Matters are quite different for shapes sizes 3 and 4. The interactions seem
to be responsible for the significant improvement of the accuracy. More than 40%
of matched shapes for the move chosen by the expert are of sizes 3 or 4. This
is the reason for the dramatic lift of the average prediction accuracy and the
prediction accuracy in the later game phases. Additionally, considering that full
board shapes are only matched during the first game phases and probably being
part of standard opening moves, the advantage of the other algorithms for full
board shapes is even more weakened. Using opening books for Go AI and that
LFR has still a similar prediction accuracy in the first game phase (see Figure
3(a)) does not justify the preference of one of the other algorithms.

Fig. 4. On the left side are the first moves of a game played between two artificial
players using the LFR1 always choosing the move with highest ranking. By means of
comparison, the first moves of a game played between two of the ten strongest players
on the KGS Go Server are shown on the right side.

On the left side, Figure 4 shows a game of Go between two LFR1 predictors
which are always choosing the most likely action. The right side shows the first
moves of a game played between two very strong players who were ranked within
the top 10 of the Go GKS Server. At first glance, both games look very similar.
On a closer look, the first moves are indeed almost the same. However, from
move 10 on, LFR strongly prefers moves close to the moves made before and
never takes the initiative by placing a stone somewhere else as seen in the game
between the human players. The reason is simple: LFR is a move predictor
optimized for accuracy. As one can see, in most cases a move is made close
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to the last moves. Thus, it would be unreasonable to do these kind of moves.
Nonetheless, this is exactly the reason why a move predictor alone is not a strong
Go player. Anyways, it is very surprising how similar these games are.
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Fig. 5. Influence of the dimensionality and the feature interactions.

The advantage of our model is that the received feature interaction weights
also give an insight into Go and the importance of each feature. The main idea
of combining features was that combinations of features might give more infor-
mation. For instance, a feature appearing alone might indicate a bad move, but
in interaction with another feature it might indicate a good move or vice versa.
Unfortunately, restricting only to the non-shape features, an example of this kind
of feature was not found. Nonetheless, the heat map in Figure 5(b) has exposed
some interesting facts. Unsurprisingly, feature 4 (self-atari) indicates bad moves
and feature group 2 (capture) indicates good moves. Feature groups 7 and 8
(distance to previous moves) has some kind of reinforcing effects. Feature values
of moves close to the previous moves have a stronger impact than moves further
away. So feature group 2 is a better feature for moves close to the last move.
Furthermore, feature group 4 is a worse feature for these moves. A possible ex-
planation for this observation is that a player is more aware of his actual area of
interest. Additionally, if he decides not to do a move that has a positive feature
but places stones in another part of the board, this could indicate that the move
is probably not good.
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6 Conclusion

This work has introduced a model for the move prediction problem of Go which
is able to model interactions between features in an efficient way. The Latent
Factor Ranking is not only easy to implement but learning can also be done
online and hence does not have memory issues like MM. Finally, experiments
have demonstrated the move prediction quality of LFR and how it can be used
to gain insights into used features.

For future research interactions between more than two features could be of
interest as well as user-specific predictions and folding in informations gained
during a game.
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