Automatic Frankensteining: Creating Complex Ensembles Autonomously

Martin Wistuba *

Abstract

Automating machine learning by providing techniques that
autonomously find the best algorithm, hyperparameter con-
figuration and preprocessing is helpful for both researchers
and practitioners. Therefore, it is not surprising that auto-
mated machine learning has become a very interesting field
of research. While current research is mainly focusing on
finding good pairs of algorithms and hyperparameter con-
figurations, we will present an approach that automates the
process of creating a top performing ensemble of several lay-
ers, different algorithms and hyperparameter configurations.
These kinds of ensembles are called jokingly Frankenstein
ensembles and proved their benefit on versatile data sets
in many machine learning challenges. We compare our ap-
proach Automatic Frankensteining with the current state of
the art for automated machine learning on 80 different data
sets and can show that it outperforms them on the major-
ity using the same training time. Furthermore, we compare
Automatic Frankensteining on a large scale data set to more
than 3,500 machine learning expert teams and are able to
outperform more than 3,000 of them within 12 CPU hours.

1 Introduction

Algorithm selection and hyperparameter optimization
is an omnipresent problem for data science practition-
ers and researchers. Nevertheless, they are usually not
concerned about which algorithm or which hyperparam-
eter configuration is selected but they want to have an
accurate prediction model. Hence, it is not surprising
that many main machine learning players such as Ama-
zon, IBM, Google and SAS offer commercial tools that
at least partially automate this process.

Automating machine learning also attracted a lot
of attention of machine learning researchers in the past
years. Various studies were able to show that auto-
matic hyperparameter optimization is able to outper-
form human experts [2, 15]. Furthermore, the concept
was extended to select preprocessing, algorithm and hy-
perparameter configurations altogether. The two most
famous publicly available tools that offer these features
are Auto-WEKA [18] and auto-sklearn [5]. Often, the
tools for automating machine learning are extended by

Information Systems and Machine Learning Lab, University
of Hildesheim, Germany

Nicolas Schilling *

Lars Schmidt-Thieme *

methods from meta-learning to transfer knowledge from
observed data sets to new ones to initialize the search
[19].

The current research focuses strongly on the
question which algorithm/hyperparameter configura-
tion combination is best. But in fact the true task that
needs to be tackled is to find the strongest prediction
model which of course does not need to be estimated
from a single algorithm but might be an ensemble of
many of them.

While detailed machine learning solutions for real
problems created by companies are often confidential,
the many competitions hosted by platforms such as
Kaggle, DrivenData and Codal.ab give great insight
how high performance systems for company data can
be created. The top performing solutions are often
based on ensembles with many layers and various types
of preprocessing, hyperparameter configurations and al-
gorithms. These solutions are often very complex and
hence this kind of ensembling is jokingly called Franken-
steining named after the novel by Mary Shelly [16] in
which the scientist Frankenstein creates an ugly artifi-
cial life form of many different components. Inspired by
these solutions, we try to improve the current state of
the art for automated machine learning by proposing a
way that will find solutions like these Frankenstein en-
sembles that make intensive use of diverse algorithms
and multi-layer ensembling. Hence, we propose Auto-
matic Frankensteining, an automatic approach to gen-
erate deep stacked ensembles. While some research al-
ready identified that an average ensemble improves the
performance [11, 5, 12], no one has looked into the di-
rection of deep ensembles that consist of several layers.
Thus, we are the first to propose a machine learning
approach that autonomously identifies a good set of hy-
brid base learners for a stacked ensemble as well as the
right combiner for all base learners. We compare our
approach on 80 different classification data sets from
the UCI repository to the current state of the art ap-
proaches Auto-WEKA and auto-sklearn and show that
Automatic Frankensteining is outperforming its com-
petitors on the large majority of data sets using the
same CPU time. Finally, we compare our approach
to the performance of more than 3,500 human machine
learning expert teams on a large scale business data set.

Therefore, to the best of our knowledge, we are the first
to compare automated machine learning to this very
large amount of human experts. Additionally, the so-
lution found by Automatic Frankensteining is outper-
forming more than 3,000 of the human experts on this
task within 12 hours CPU time while each human ex-
pert team had 62 days.

2 Related Work

Automating machine learning has become a hot topic
in the past years. Snoek et al. [17] were among
the first to show that Bayesian optimization can be
used to automate hyperparameter optimization. Soon
afterwards, this idea was extended to the problem of
selecting algorithms and preprocessing techniques [18].
Various approaches to make use of meta-knowledge
either through initialization [6] or transfer surrogate
models [1] have been proposed to accelerate the search
for good models. Lately, first tries to make use of
ensembling techniques have been proposed. Feurer et al.
[5] identified that the many prediction models estimated
during Bayesian optimization can be used afterwards
to create a weighted ensemble. Lacoste et al. [11]
proposes a Bayesian approach. They combine those
models that perform best on a randomly selected subset
of the validation data. Finally, Levesque [12] proposes
to use Bayesian optimization directly to estimate which
prediction model is the best candidate to be added
to the ensemble. Thornton et al. [18] do not focus
on the problem of creating strong ensembles but they
make use of more advanced ensembling techniques by
considering the structure of the ensemble as further
hyperparameters.

In contrast to the state of the art, we propose two
innovations. First, we learn strong prediction models
per algorithm instead of an overall strong model to
obtain strong base learners for the ensemble. Second,
we create deep ensembles instead of flat ensembles
automatically. Therefore, we use Bayesian optimization
to directly estimate strong base learners for ensembling
techniques such as stacking instead of finding models
that are good in general and create an ensemble as a
by-product.

3 Background

In the next section we will formalize the problem and
describe the basics of automating machine learning and
ensembles.

3.1 Problem Definition In supervised machine
learning one tries to learn a strong prediction model
based on a labeled data set D with n instances and m
predictors X € R™*™ with corresponding labels y € R"”

that minimizes a given loss function £ for future data in-
stances. This raises the questions which is the best ma-
chine learning algorithm of a set of possible algorithms
Ay, ..., Ay for a problem where a machine learning al-
gorithm A uses the labeled training data to estimate a
prediction model §. Most machine learning algorithms
also have parameters that are not learned during the
training phase but need to be set upfront. A typical ex-
ample is the trade-off parameter C' of a linear support
vector machine. These parameters are usually called hy-
perparameters. Since the resulting model is usually sen-
sitive to the chosen hyperparameter configuration, we
actually want to know which algorithm combined with
what hyperparameter configuration leads to the model
that achieves the smallest loss.

Let us formalize the different parts of machine
learning to ease talking about them. A machine learning
algorithm A is a function A : R™™*™ x Y" x A —- M
where A is the hyperparameter space,) the target space
and M the space of all prediction models. The result
of this function is a prediction model g : R™ — Y
that allows to make predictions for new instances. The
target space) depends on the problem. For regression
problems) = R™ and for classification problems) =
R™*¢ for a set of classes C = {1,...,c}. For the
groundtruth Y €)Y of a classification problem usually
yields that y; ; = 1 if instance 7 belongs to class j and
¥i,; = 0 otherwise.

We will focus on classification problems as a specific
problem instance in this paper. Typical classification
losses are the classification error

(3.1)
- 1 &
L (Y,Y) = — ZH (argmax Yi,j 7 argmax Qi’j)
ne- jec jec

and the logistic loss

L (Y,SA{) = f%iiyu log (i)

i=1 j=1

(3.2)

where Y is the groundtruth and Y the prediction.

The hyperparameter space A depends on the algo-
rithm A. In the aforementioned case of a linear sup-
port vector machine with the only hyperparameter be-
ing the trade-off C, the hyperparameter space would
equal R*, however, hyperparameter spaces are often
multi-dimensional.

3.2 Automatic Hyperparameter Optimization
Most state of the art methods for automatic hyperpa-
rameter optimization are based on Bayesian optimiza-
tion [13]. The hyperparameter optimization problem for

an algorithm A is defined as

(3.3) argmin f(A) = argmin £ (Yvaid, Mx (Dyalid))

AEA AEA

with Mx = A (Dyrain, A) for a data set D € R"*™ x)
which is split into train and validation fold. Adding al-
gorithms to the representation of A, this representation
can also be used to describe the problem of combined
algorithm and hyperparameter configuration selection.
To minimize the function f, Bayesian optimization
uses two different components: the surrogate model ¥
and the acquisition function a. The surrogate model
¥ is a regression model that provides some uncertainty
about its prediction. This model approximates f by
using all known observations of f stored in the history
‘H. The acquisition function uses the predicted mean
and uncertainty of ¥ to assess to what degree a given A
finds the balance between exploitation and exploration.
The chosen A is then evaluated on f, the result stored
in H and ¥ is updated. Algorithm 1 explains Bayesian
optimization in detail. In our experiments we rely on the
most common choices for both components. We choose
a Gaussian process as a surrogate model and expected
improvement [10] as the acquisition function.

Algorithm 1 Bayesian Optimization
Input: Hyperparameter space A, observation history
‘H, time limit ¢, acquisition function a, surrogate
model V.
Output: Best hyperparameter configuration found.
1: while time limit ¢ is not reached do
2. FitWtoH
3 A argmaxyea @ ()\7 v, fmi“)
4: Evaluate f ()
5 H+—HU{NFA))}
6:
7
8:

if f(A) < ™" then
AT fin X f ()
return \™"

3.3 Ensembling Techniques An ensemble of clas-
sifiers is a combination of classifiers k1, ..., h.. The sim-
plest way of combining them is by voting i.e. that each
classifier has an equal vote and the majority decides
which class is predicted. If the probability score is pre-
dicted one can combine the prediction by averaging the
score over all classifiers.

(3.4 9@ =23 hi@)

Instead of using an unweighted voting/averaging, one
can also assign weights to the classifiers. This can be

done manually or also learned on a hold-out data set
[3]. Important for an ensemble is that its members
are accurate by itself (better than random) and diverse
which means they are stronger than the other members
on specific parts of the data [8]. A more advanced
technique to combine classifiers is stacking. In the case
of stacking, the data set needs to be split into disjoint
sets Dy and D5. The ensemble members will be trained
on D; and predictions are estimated for all (x,y) € Ds
and vice versa. After obtaining the meta-instances

((m@ - @) ")

a combiner algorithm is learned on these meta-instances
which can be any classifier or even another ensemble.

(3.5)

4 Automatic Frankensteining

In the Automatic Frankensteining framework we distin-
guish between two different components. The model
selection component is responsible for training mod-
els and finding near-optimal hyperparameter configura-
tions. The ensembling component combines the models
trained in the preceding model selection component to
further boost the prediction performance and reduce the
input space for the subsequent model selection compo-
nent.

4.1 Model Selection Component The task of the
model selection component is to create useful meta-
features or to provide the final predictions based on
some given input. On an abstract level, the model
selection component can be considered as a function
g : X — Y* that converts a data set representation
X, to an intermediate representation g (Xs3). There-
fore, it needs to be trained previously on a data set
Dy with predictors X; and corresponding labels .
This conversion is done by learning machine learn-
ing algorithms Aj,...,Ax on D; that create models
g : X — Y. Using these models to create predictions
(91 (X2),..., 0 (X2))" we obtain a new representation.

EXAMPLE 4.1. Assume that only one model is used to
generate a new representation for some predictors Xs.
Then one can e.qg. use a decision tree A1 with a chosen
hyperparameter configuration A1 and train it on the data
set Dy. A prediction model 3 is obtained which can be
used to make predictions for Xo, i.e. §(Xs2). These
predictions are used as the new representation for Xs.

As previously explained in Section 3.3, good meta-
features are created by a diverse set of machine learn-
ing algorithms. Here, diversity rather than prediction
performance is important. Nevertheless, very weak or
useless prediction models will also lead to bad meta-

Algorithm 2 Training the Model Selection Component

Input: Hyperparameter spaces A ..., observation his-
tories Hi,.., surrogate models ¥; ., acquisi-
tion function a, time limit ¢, train and valida-
tion data sets Dtrain = (Xtraina ytrain)) Dvalid
(Xvalids Yvalid)- .

Output: Meta-features Y for Dya)iq, loss L for column-
wise predictions on Dy)iq-

L), Y« ()
2: while time limit ¢ is not reached do
3: Choose j € {1,...k} proportional to |A;|.

4: Fit !pj to Hj

5 A< argmaxiep; @ (/\7 v, f;-ni“)

6: if predicted run-time for A; (Xirain, Yorain, A) does
not exceed the remaining run-time then

7 g «— Aj (Xtraina Ytrain,)‘)

8: [i (A) = L (Yvatid; ¥ (Xvalia))

9 Hj < H;U{(A 5 (N)}

10: ? — (Y' Q(Xvalid))
11: L(*(L fJ(A))
12: if f; () < f;»nin then
13: f;“j“ — fi (N

14: return Y, L

features. Hence, it is vital to select appropriate hyper-
parameter configurations for the machine learning algo-
rithms. The model selection component will solve both
issues. Having access to k machine learning algorithms
Aq,..., A, it will automatically search for good hyper-
parameter configurations for each of them. In contrast
to the state of the art for automatic model selection
and hyperparameter tuning, which is interested in find-
ing the best model with the best hyperparameter con-
figuration, we are interested in finding predictive meta-
features. Thus, we need to find for each algorithm a
hyperparameter configuration that leads to a good pre-
diction model itself. Hence, the hyperparameter search
differs from the current state of the art approaches.
While the state of the art is applying a global hyper-
parameter optimization over the whole algorithm and
hyperparameter space, we apply a hyperparameter op-
timization per algorithm. Because the hyperparameter
dimensionality between algorithms might differ a lot, as
a logistic regression has only one to two hyperparame-
ters while a neural network might have a dozen, each of
the k individual hyperparameter searches is continued
with probability proportional to the number of hyper-
parameters. For the automatic hyperparameter search,
we make use of the current state of the art approach
Bayesian optimization explained in Section 3.2.
Algorithm 2 summarizes the training procedure of

the model selection component. Given a set of k
learning algorithms Ay, ..., Ay, a training and valida-
tion data set Dirain and Dyaiq, k-many hyperparameter
searches are executed in parallel for a given time limit
t. Whenever resources are free to evaluate a new hyper-
parameter configuration A, an algorithm A; is selected
proportional to the dimensionality of the hyperparame-
ter search. Following the typical Bayesian optimization
method, the surrogate model ¥; is updated and the hy-
perparameter configuration for the chosen algorithm A;
is selected that maximizes the acquisition function. If
the predicted run-time of evaluating A; with the se-
lected hyperparameter configuration A exceeds the re-
maining run-time we continue with another algorithm.
For predicting the run-time we use the approach pro-
posed by Hutter et al. [9]. We run our k algorithms on
different data sets of different sizes. Then, we use the
number of instances, the number of predictors and the
hyperparameter configuration to predict the run-time
using a random forest. This will ensure that training the
model selection component will finish within the speci-
fied time frame. In the case that no further algorithm
can finish in the remaining time, we stop training the
model selection component early.

After training the model selection component, it
will provide predictions for Dyajiq for each model learned
and its corresponding loss. This output will be used for
training the following ensembling component. Further-
more, the model selection component now represents a
function ¢g : R™*P — R"*9 that can map some pre-
dictors X € R"*P to the meta-feature space. There-
fore, the ¢ prediction models trained during the train-
ing phase of the model selection component are used to
make predictions
Y = (9 (X)

(4.6) gq (X))

which act as our meta-features.

4.2 Ensembling Component Before using the out-
put of the model selection component as final predic-
tions or meta-features, the dimensionality needs to be
reduced. One option is to use the validation perfor-
mance to select only the predictions of the best model
or the best model of each algorithm. This has the ad-
vantage of using strong prediction models from diverse
algorithms but the disadvantage that many estimated
models are not considered at all. Another option is to
average the predictions or average them by algorithm.
This usually leads to a lift in the prediction but will
not work in our case. Here, we face the problem that
we learned some models with bad hyperparameter con-
figurations that led to very bad or even constant mod-
els that will deteriorate the overall prediction. There-

Model Ensembling
Selection Component 1
Component 1
0 K. A
(]
: n : n me
D ° °
[]

g oo ppl

Model
Selection
Component 2

Ensembling
Component 2

m— !

ﬂ q2
~
|
]

Figure 1: The final framework consists of two main layers. The first layer learns models on the original data. The
estimated models are then ensembled by algorithm family. The resulting predictions lead to our meta-features
that are used in the second main layer. Again, models are trained, this time on the meta-features. Finally, all

models are ensembled to a single prediction vector.

fore, we propose to use a weighted ensemble to combine
different models, i.e. the columns of Y. We employ
the bagged ensembling technique with replacement by
Caruana et al. [3] to create b bags. Each bag chooses at
random with probability r whether to consider a model
or not. Then, s models are greedily selected and com-
bined. The final prediction is the average prediction of
all bags. This bagged approach will avoid overfitting on
the meta-level. This way of ensembling might look com-
plicated but in fact it is nothing but a weighted average
of all models. Algorithm 3 summarizes the component.
During the training phase the weights are estimated on
some validation set. For prediction, these weights are
used to combine the predictions of the model selection
component. Since most weights are zero, many models
can be discarded after the training procedure of the en-
sembling component has finished. This saves memory
and reduces the prediction time.

4.3 Final Framework In this section we will de-
scribe how the components described in the previous
sections are combined to the final framework. Further-
more, we will describe on what part of the data the
specific components have been trained and evaluated.

Figure 1 sketches our framework. While it looks
complicated, it is the most simple version of our pro-
posed method of Automatic Frankensteining. In fact, it
is very similar to a stacked ensemble.

First, the given training data is split into two dis-
joint parts Diyain and Dypleng where Dyjenqg contains
10% of the data. Dirain is used in the first model se-
lection component. The component is evaluating al-
gorithm /hyperparameter configurations in a three-fold
cross-validation. Thus, we are learning for each algo-
rithm /hyperparameter configuration tuple three mod-

Algorithm 3 Bagged Ensemble

Input: Number of bags b, fraction of models in a bag r,
number of combined models in a bag s, groundtruth
Yvalid, predictions Y € Rx4,

Output: Prediction of the ensemble.

1: for i + 1 to b do

Qc{l,...,q}st. |Q=rq

J;i 0 e R"

for j < 1to s do

Mpest Oa lbest < 00
for m € Q) do
<L (yvalid7 Jl (Qz + Y,m))
if | < lest then
Mhpest < Js lbest <1
Ui Ui + Y. mpe
11: return ?:1 Ui

=
=

1
b-s

els, one for each fold. The following ensembling com-
ponent also evaluates the weighted ensembles with a
three-fold cross-validation with b = 1, s = 30 and r = 1.
At this point, we can generate meta-features for Dyyain
by using out-of-fold-predictions such that label infor-
mation is not leaked. Furthermore, we can generate
meta-features for arbitrary data by averaging the pre-
dictions of each of the three prediction models learned
on a fold. We avoid retraining a model on the complete
data to save time. Now, the training for the first two
components is completed and they will not be updated
any more.

Then, the last two components are trained. Using
the first two components, we generate the meta-features
for Dpjeng that is used as the training data for the last
two components. Dipain Will be used at this point for

1.00

Classification Error Auto-WEKA
o °
@ S
3 3

o
N
a

0.00

On this side Automatic Frankensteining is better.

:i? 4
4 On this side Auto-WEKA is better.
025 050 0.75 1.00
Classification Error Automatic Frankensteining

v
0.00

Classification Error auto—-sklearn

1.00

o
3
a

o
@
=)

o
N
a

On this side Automatic Frankensteining is better.

.

r 4

025 0.50 0.75
Classification Error Automatic Frankensteining

v
0.00

On this side auto-sklearn is better.

v
1.00

Classification Error auto—-sklearn

1.00

o
5
a

o
@
=}

o
N
a

0.00

On this side Auto-WEKA is better.

On this side auto-sklearn is better.

v v v v
0.25 0.50 0.75 1.00

Classification Error Auto-WEKA

v
0.00

Figure 2: Our approach Automatic Frankensteining is only beaten on 11 data sets by Auto-WEKA and only 3
by auto-sklearn and hence provides the better solution for the majority of data sets.

evaluating the performance of the models. Actually,
we trained the second model selection component twice.
Once, only on the meta-features and once on the meta-
features plus the original features. This allows to
use possible interactions between features and meta-
features. All models are finally combined with a big
weighted ensemble with b = 10, s = 30 and r = 0.5.

Now, the automatically created ensemble can be
used to predict for a new test data set Diest. The first
model selection component computes the meta-features
that are then processed by the ensemble component.
These meta-features now are used for the second model
selection component as features and their output is
combined again by another ensembling component to
the final prediction vector. For this step only predictions
are done or combined.

We restrict us to following classifiers: naive Bayes
(Gaussian and Bernoulli), logistic regression, support
vector machine with radial basis kernel, k-nearest neigh-
bors, extra randomized trees, gradient boosting classi-
fier [14] and gradient boosting machine [4].

The first half of the available training time is used
to train the first two components, the second half for
the last two components.

5 Experimental Section

Our experimental section is divided into two parts.
In the first part we focus on comparing our approach
to the current state of the art for automatic machine
learning. In the second part we focus on comparing
against human machine learning experts.

5.1 Comparison to Other Approaches We will
compare our approach against Auto-WEKA [18] and
auto-sklearn [5] using the authors’ implementation and

recommended settings.

Auto-WEKA is an addition to WEKA [7] which
makes use of the different preprocessing techniques and
algorithms offered by WEKA. Since stacking and other
ensembles are also algorithms in WEKA, Auto-WEKA
can make use of ensembles as well. In contrast to our
approach, it is not steered to create an ensemble and
thus it can happen that the final solution found by Auto-
WEKA is not an ensemble. At its core, Auto-WEKA’s
search is controlled by Bayesian optimization.

auto-sklearn uses Bayesian optimization to find
good algorithms, hyperparameter configurations and
preprocessing techniques provided by scikit-learn [14].
After finishing the search, auto-sklearn uses a weighted
ensemble [3] to combine estimated prediction models.
It has also the feature to use meta-knowledge to initial-
ize [6] the search i.e. that it first evaluates those al-
gorithm /hyperparameter configuration pairs that have
been good on many other data sets. We disabled this
feature to avoid a distortion of the results for two rea-
sons. First, Auto-WEKA does not contain this feature
and second, we perform our evaluation on UCI data
sets which are likely used to estimate the initialization
sequence and thus auto-sklearn would make use of test
information.

We chose 80 different classification data sets from
the UCI repository. If these data sets already provided
a train/test split we merged them. We shuffled the
instances and split them into 80% training data and
20% test data that is used for evaluation purposes only.
Our evaluation measure is the classification error for
which all methods are optimized directly. Each method
got 30 minutes time to create the best predictions.

Figure 2 shows the classification error on the test

Results for the Otto Group Product Classification Challenge

10%2 7 o Tl Random Forest Benchmark _ _

100.1 4

100 4

Multi-Class Log-Loss

5000
CPU Time (in minutes)

3000+

Random Forest Benchmark

2000+

Private Leaderboard Rank

1000+

5000
CPU Time (in minutes)

auto-WEKA— auto—sklearn— Automatic Frankensteining

Figure 3: Automatic Frankensteining (bottom) achieves within hours already a very small loss on the private
leaderboard, outperforming the automated machine learning baselines WEKA (top) and auto-sklearn (middle)
as well as the majority of human participants. The dotted lines indicate the performane of the Random Forest
Benchmark, the top 25% and top 10% of the participants.

split where each point represents one data set. The
classification error for each approach can be read from
the axis. Points on the diagonal indicate ties, points
on the one or the other side indicate wins for the
named method. Our approach Automatic Frankenstein-
ing finds in 55 out of 80 cases a better prediction model
than Auto-WEKA and has 14 ties. In comparison to
auto-sklearn the difference is even stronger. Automatic
Frankensteining finds for 74 data sets a stronger model
and only in 3 cases auto-sklearn provides the better so-
lution. The average rank of Automatic Frankenstein-
ing is 1.28, for Auto-WEKA 2.06 and for auto-sklearn
2.66. Comparing Auto-WEKA and auto-sklearn head
to head, Auto-WEKA finds on average the better pre-
diction models. It finds in 56 cases the better solution,
only in 21 cases auto-sklearn is the better option

5.2 Comparison to Human Experts To compare
our approach against a wide range of machine learning
experts, we applied Automatic Frankensteining on the
Otto Group Product Classification Challenge!, one of
the most popular Kaggle challenges. In this challenge,
the Otto Group, one of the world’s biggest e-commerce
companies, asked participants to decide to which of
their main categories a product described by 93 features
belongs. The challenge data contains business data
from more than 20 countries of the Otto Group for
more than 200,000 products. The performance was

Thttps://www.kaggle.com/c/otto-group-product-

classification-challenge

measured based on the multi-class logistic loss as defined
in Equation 3.2. More than 3,500 teams participated in
this challenge and tried for 62 days to be among the top
three to claim their share of the $10,000 price money.
The organizers provided a Random Forest Benchmark
baseline which was able to achieve a score of 1.5387 on
the private leaderboard, the best solution achieved a
score of 0.38243.

The labels for the leaderboards were never made
publicly available but it is still possible to submit your
predictions and let Kaggle evaluate it for you. This
means the following for our experiments. First, we are
limited by the number of submissions and evalutions
because they involve time-consuming interactions with
the Kaggle interface. Hence, we were restricted to just
few evaluations. Second, since the label is still hidden,
it is impossible that our results are distorted by any
means because the split and evaluation are maintained
by a third party. This also guarantees a high degree of
reproducability.

The main focus in this experiment is the compar-
ison of Automatic Frankensteining to human experts.
Nevertheless, it is also interesting to see how the cur-
rent state of the art for automated machine learning
performs. Unfortunately, Auto-WEKA only allows to
optimize for the classification error and not for arbitrary
metrics. We still report the results of Auto-WEKA but
this is the reason why we see rather bad and strange re-
sults by Auto-WEKA. Automatic Frankensteining and
auto-sklearn directly optimize for the right loss. We de-

cided to give each approach 12, 24, 36, ..., 156 hours
and submit the predictions after this time to the Kag-
gle platform. Since we saw a dramatic improvement
by auto-sklearn after 156 hours, we also investigated
whether auto-sklearn can improve even more, if more
time is provided. Figure 3 presents the results with re-
spect to the multi-class log-loss and the rank on the
private leaderboard for the predictions estimated af-
ter the given CPU time. As explained before, Auto-
WEKA shows some strange behaviour. But since the
log-loss correlates with the classification error, Auto-
WEKA is able to beat at least the baseline provided
by the challenge organizers. Automatic Frankenstein-
ing achieves already after 12 hours a very good result
and can improve, if more computational run-time is pro-
vided. After running for 2 days on the data set, Auto-
matic Frankensteining has converged and does not show
any further improvement. It is not able to reach the top
10% of the participants and reached a score just under
rank 400. Yet, this is quite an impressive result consid-
ering that the better performing human experts likely
had to spend much more time to achieve the same re-
sult. Furthermore, Automatic Frankensteining is able
to demonstrate for a further data set that it delivers
the better predictions than auto-sklearn.

We also investigated the performance of the indi-
vidual components. Each single model created by Auto-
matic Frankensteining provided worse predictions than
the final ensemble. So we can confirm the results found
by the human experts during this challenge, that only
a Frankenstein ensemble can provide the most powerful
predictions.

6 Conclusions

We proposed Automatic Frankensteining, an automatic
way of learning ensembles with many different algo-
rithms with several layers. In a comparison on 80 dif-
ferent data sets, Automatic Frankensteining was able
to outperform the current state of the art for auto-
matic machine learning for the large majority of the
data sets. Furthermore, in an additional experiment we
compared Automatic Frankensteining on a large scale
business data set with more than 3,500 human machine
learning expert teams and were able to achieve a bet-
ter score than more than 3,000 teams within just 12
hours CPU time. In the future we will further improve
our method to finally reach the level of very strong ex-
perts. Therefore, we have to focus strongly on compo-
nents such as automatic feature engineering which cur-
rently give human experts a not negligible advantage
over our approach. We already used an early version of
Automatic Frankensteining in the ECML/PKDD 2016
Discovery Challenge on Bank Card Usage. While this

early version was not cappable of reaching very high per-
formances, it still gave us some insights that we used to
improve our solutions which eventually led to winning
the challenge.

Acknowledgements

The authors gratefully acknowledge the co-funding of
their work by the German Research Foundation (DFG)
under grant SCHM 2583 /6-1.

References

[1] Rémi Bardenet, Métyds Brendel, Baldzs Kégl, and
Michele Sebag. Collaborative hyperparameter tuning.
In Proceedings of the 30th International Conference on
Machine Learning, ICML 2013, Atlanta, GA, USA, 16-
21 June 2013, pages 199-207, 2013.

[2] James Bergstra, Rémi Bardenet, Yoshua Bengio, and
Baldzs Kégl. Algorithms for hyper-parameter opti-
mization. In Advances in Neural Information Process-
ing Systems 24: 25th Annual Conference on Neural
Information Processing Systems 2011. Proceedings of a
meeting held 12-14 December 2011, Granada, Spain.,
pages 2546-2554, 2011.

[3] Rich Caruana, Alexandru Niculescu-Mizil, Geoff Crew,
and Alex Ksikes. Ensemble selection from libraries
of models. In Machine Learning, Proceedings of the
Twenty-first International Conference (ICML 2004),
Banff, Alberta, Canada, July 4-8, 2004, 2004.

[4] Tiangi Chen and Carlos Guestrin. Xgboost: A scalable
tree boosting system. In The 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’16, San Francisco, CA, USA -
August 13 - 17, 2016, 2016.

[5] Matthias Feurer, Aaron Klein, Katharina
Eggensperger, Jost Tobias Springenberg, Manuel
Blum, and Frank Hutter. Efficient and robust au-
tomated machine learning. In Advances in Neural
Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada,
pages 2962-2970, 2015.

[6] Matthias Feurer, Jost Tobias Springenberg, and Frank
Hutter. Initializing bayesian hyperparameter optimiza-
tion via meta-learning. In Proceedings of the Twenty-
Ninth AAAI Conference on Artificial Intelligence, Jan-
uary 25-30, 2015, Austin, Texas, USA., pages 1128-
1135, 2015.

[7] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Tan H. Witten. The
weka data mining software: An update. SIGKDD
Ezplor. Newsl., 11(1):10-18, November 2009.

[8] Lars Kai Hansen and Peter Salamon. Neural network
ensembles. IEEE Trans. Pattern Anal. Mach. Intell.,
12(10):993-1001, 1990.

(9]

(10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

Frank Hutter, Lin Xu, Holger H. Hoos, and Kevin
Leyton-Brown. Algorithm runtime prediction: Meth-
ods & evaluation. Artif. Intell., 206:79-111, 2014.
Donald R. Jones, Matthias Schonlau, and William J.
Welch. Efficient global optimization of expensive
black-box functions. J. of Global Optimization,
13(4):455-492, December 1998.

Alexandre Lacoste, Hugo Larochelle, Mario Marchand,
and Frangois Laviolette. Sequential model-based en-
semble optimization. In Proceedings of the Thirtieth
Conference on Uncertainty in Artificial Intelligence,
UAI 2014, Quebec City, Quebec, Canada, July 23-27,
2014, pages 440-448, 2014.

Julien-Charles Levesque, Christian Gagné, and Robert
Sabourin. Bayesian hyperparameter optimization for
ensemble learning. In Proceedings of the Thirty-Second
Conference on Uncertainty in Artificial Intelligence,
UAI 2016, June 25-29, 2016, New York City, NY,
USA, 2016.

Jonas Mockus, Vytautas Tiesis, and Antanas Zilinskas.
The application of bayesian methods for seeking the
extremum. Towards Global Optimization, 2:117-129,
1978.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825-2830, 2011.
Nicolas Pinto, David Doukhan, James J DiCarlo, and
David D Cox. A high-throughput screening approach
to discovering good forms of biologically inspired vi-
sual representation. PLoS Computational Biology,
5(11):1000579, 2009. PMID: 19956750.

Mary Wollstonecraft Shelley. Frankenstein; or, The
Modern Prometheus. Lackington, Hughes, Harding,
Mavor & Jones, 1818.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams.
Practical bayesian optimization of machine learning al-
gorithms. In Advances in Neural Information Process-
ing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a
meeting held December 3-6, 2012, Lake Tahoe, Nevada,
United States., pages 2960-2968, 2012.

Chris Thornton, Frank Hutter, Holger H. Hoos, and
Kevin Leyton-Brown. Auto-weka: Combined selection
and hyperparameter optimization of classification al-
gorithms. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, KDD ’13, pages 847-855, New York, NY,
USA, 2013. ACM.

Martin Wistuba, Nicolas Schilling, and Lars Schmidt-
Thieme. Learning hyperparameter optimization ini-
tializations. In International Conference on Data Sci-
ence and Advanced Analytics, DSAA 2015, Paris,
France, October 19 - 21, 2015, 2015.

