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Abstract

Forecasting irregularly sampled time series with missing val-
ues is a crucial task for numerous real-world applications
such as healthcare, astronomy, and climate sciences. State-
of-the-art approaches to this problem rely on Ordinary Dif-
ferential Equations (ODEs) which are known to be slow and
often require additional features to handle missing values. To
address this issue, we propose a novel model using Graphs
for Forecasting Irregularly Sampled Time Series with miss-
ing values which we call GraFITi. GraFITi first converts the
time series to a Sparsity Structure Graph which is a sparse
bipartite graph, and then reformulates the forecasting prob-
lem as the edge weight prediction task in the graph. It uses
the power of Graph Neural Networks to learn the graph and
predict the target edge weights. GraFITi has been tested on
3 real-world and 1 synthetic irregularly sampled time series
dataset with missing values and compared with various state-
of-the-art models. The experimental results demonstrate that
GraFITi improves the forecasting accuracy by up to 17% and
reduces the run time up to 5 times compared to the state-of-
the-art forecasting models.

1 Introduction
Time series forecasting predicts future values based on past
observations. While extensively studied, most research fo-
cuses on regularly sampled and fully observed multivari-
ate time series (MTS) (Lim and Zohren 2021; Zeng et al.
2022; De Gooijer and Hyndman 2006). Limited attention is
given to irregularly sampled time series with missing values
(IMTS) which is commonly seen in many real-world appli-
cations. IMTS has independently observed channels at irreg-
ular intervals, resulting in sparse data alignment. The focus
of this work is on forecasting IMTS. Additionally, there is
another type called irregular multivariate time series which
is fully observed at irregular time intervals (Figure 1 illus-
trates the differences) which is not the interest of this paper.

Ordinary Differential Equations (ODE) model continuous
time series, and predict system evolution over time based on
the rate of change of state variables as shown in Eq. 1.

d

dt
x(t) = f(t, x(t)) (1)
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(a) Forecasting regular multivariate time series (MTS)
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(c) Forecasting irregularly sampled time series with
missing values (IMTS)

Figure 1: Illustrating forecasting task in various multivariate
time series.

ODE-based models (Schirmer et al. 2022; De Brouwer et al.
2019; Biloš et al. 2021; Scholz et al. 2023) are able to fore-
cast at arbitrary time points. However, ODE models can
be slow because of their auto-regressive nature and com-
putationally expensive numerical integration process. Also,
some ODE models cannot directly handle missing values
in the observation space, hence, they often rely on missing
value indicators (De Brouwer et al. 2019; Biloš et al. 2021)
which are given as additional channels in the data.

To circumvent the above challenges, in this work, we pro-
pose a novel model called GraFITi: graphs for forecasting
IMTS. GraFITi converts IMTS data into a Sparsity Structure
Graph and formulates forecasting as edge weight prediction
in the graph. This approach represents channels and time-
points as disjoint nodes connected by observation values as
edges in a bipartite graph. GraFITi uses multiple graph neu-
ral network (GNN) layers with attention and feed-forward
mechanisms to learn node and edge interactions. Our Spar-



sity Structure Graph, by design, provides a more dynamic
and adaptive approach to process IMTS data, and improves
the performance of the forecasting task.

We evaluated GraFITi for forecasting IMTS using 3 real-
world and 1 synthetic dataset. Comparing it with state-of-
the-art methods for IMTS and selected baselines for MTS,
we show that GraFITi provides superior forecasts. Our con-
tributions are summarized as follows:

• We introduce a novel representation of irregularly sam-
pled time series with missing values (IMTS) as sparse
bipartite graphs, the Sparsity Structure Graph, that ef-
ficiently can handle missing values in the observation
space of the time series (Section 4).

• We propose a novel model based on this representation,
GraFITi, that can leverage any graph neural network to
perform time series forecasting for IMTS (section 5).

• We provide extensive experimental evaluation on 3 real
world and 1 synthetic dataset that shows that GraFITi
improves the forecasting accuracy of the best existing
models by up to 17% and the run time improvement
up to 5 times (section 6). Implementation code: https:
//github.com/yalavarthivk/GraFITi.

2 Related Work
This work focuses on the forecasting of irregularly sampled
time series data with missing values using graphs. We dis-
cuss the research done in: IMTS forecasting models, Graphs
for MTS, and models for edge weight prediction in graphs.

Forecasting of IMTS Research on IMTS has mainly fo-
cused on classification (Yalavarthi, Burchert, and Schmidt-
Thieme 2022; Li and Marlin 2015; Lipton, Kale, and Wet-
zel 2016; Rubanova, Chen, and Duvenaud 2019; Shukla and
Marlin 2021; Horn et al. 2020; Tashiro et al. 2021) and inter-
polation (Che et al. 2018; Rubanova, Chen, and Duvenaud
2019; Shukla and Marlin 2021; Tashiro et al. 2021; Shukla
and Marlin 2022; Yalavarthi, Burchert, and Schmidt-Thieme
2023), with limited attention to forecasting tasks. Existing
models for these tasks mostly rely on Neural ODEs (Che
et al. 2018). In Latent-ODE (Rubanova, Chen, and Duve-
naud 2019), an ODE was combined with a Recurrent Neural
Network (RNN) for updating the state at the point of new ob-
servation. The GRU-ODE-Bayes model (De Brouwer et al.
2019) improved upon this approach by incorporating GRUs,
ODEs, and Bayesian inference for parameter estimation.
The Continuous Recurrent Unit (CRU) (Schirmer et al.
2022) based model uses a state-space model with stochastic
differential equations and kalman filtering. The recent Lin-
ODENet model (Scholz et al. 2023) enhanced CRU by using
linear ODEs and ensures self-consistency in the forecasts.
Another branch of study involves Neural Flows (Biloš et al.
2021), which use neural networks to model ODE solution
curves, rendering the ODE integrator unnecessary. Among
various flow architectures, GRU flows have shown good per-
formance.

Using graphs for MTS In addition to CNNs, RNNs, and
Transformers, graph-based methods have been studied for

MTS tasks such as forecasting, imputation and reconstruc-
tion. Early GNN-based approaches, such as (Wu et al. 2020),
required a pre-defined adjacency matrix to establish relation-
ships between the time series channels. More recent mod-
els like the Spectral Temporal Graph Neural Network (Cao
et al. 2020) and the Time-Aware Zigzag Network (Chen,
Segovia, and Gel 2021) improved on this by using GNNs
to capture dependencies between variables in the time series.
On the other hand, Satorras, Rangapuram, and Januschowski
(2022) proposed a bipartite setup with induced nodes to re-
duce graph complexity, built solely from the channels. Ex-
isting graph-based time series forecasting models focus on
learning correlations or similarities between channels, with-
out fully exploiting the graph structure. Note that although
graphs have been used for MTS forecasting, state-of-the-art
approaches apply attention (Zhou et al. 2021, 2022) or lin-
ear layers (Zeng et al. 2022). It is not trivial to directly ap-
ply them to IMTS due to presence of missing values and
irregular sampling. Recently, GNNs were used for imputa-
tion and reconstruction of MTS with missing values, treat-
ing MTS as sequences of graphs where nodes represent sen-
sors and edges denote correlation (Cini, Marisca, and Alippi
2022; Marisca, Cini, and Alippi 2022; Ahmed and Schmidt-
Thieme 2023). Similar to previous studies, they learn simi-
larity or correlation among channels.

Graph Neural Networks for edge weight prediction
Graph Neural Networks (GNNs) are designed to process
graph-based data. While most GNN literature such as Graph
Convolutional Networks, Graph Attention Networks focuses
on node classification (Kipf and Welling 2017; Velickovic
et al. 2017), a few studies have addressed edge weight pre-
diction. Existing methods (De Sá and Prudêncio 2011; Fu
et al. 2018) in this domain rely on latent features and graph
heuristics, such as node similarity (Zhao et al. 2015), prox-
imity measures (Murata and Moriyasu 2007), and local rank-
ings (Yang and Wang 2020). Recently, deep learning-based
approaches (Hou and Holder 2017; Zulaika et al. 2022; You
et al. 2020) were proposed. Another branch of research deals
with edge weight prediction in weighted signed graphs (Ku-
mar et al. 2016) tailored to social networks. However, all
proposed methods typically operate in a transductive setup
with a single graph split into training and testing data, which
may not be suitable for cases involving multiple graphs like
ours, where training and evaluation need to be done on sep-
arate graph partitions.

3 The Time Series Forecasting Problem
An irregularly sampled times series with missing val-
ues, is a finite sequence of pairs S = (tn, xn)n=1:N where
tn ∈ R is the n-th observation timepoint and xn ∈
(R ∪ {NaN})C is the n-th observation event. Components
with xn,c ̸= NaN represent observed values by channel c at
event time tn, and xn,c = NaN represents a missing value.
C is the total number of channels.

A time series query is a pair (Q,S) of a time series S and
a sequence Q = (qk, ck)k=1:K such that the value of channel
ck ∈ {1, . . . , C} is to be predicted at time qk ∈ R. We call
a query a forecasting query, if all its query timepoints are



0.3

t1

0.4

t2

0.2

t3

?

t4

c1

0.4

t2

?

t5

c2

(a) IMTS

ts2graph

t1

t2

t3

t4

t5

c1

c2

(0
.3,
1)

(0.4,
1)

(0.2, 1)
(0, 0)

(0, 0)

(0
.4
, 1
)

(b) Sparsity Structure Graph

Figure 2: Representation of IMTS (a) as Sparsity Structure
Graph (b). Timpoints and channels are the nodes, and obser-
vation measurements are the edges. Target edges are differ-
entiated from observed ones with target indicator (2nd value
in the edge feature).

after the last timepoint of the time series S, an imputation
query if all of them are before the last timepoint of S and
a mixed query otherwise. In this paper, we are interested in
forecasting only.

A vector y ∈ RK we call an answer to the forecasting
query: yk is understood as the predicated value of time se-
ries S at time qk in channel ck. The difference between two
answers y, y′ to the same query can be measured by any loss
function, for example by a simple squared error

ℓ(y, y′) :=
1

K

K∑
k=1

(yk − y′k)
2

The time series forecasting problem is as follows: given
a dataset of pairs D := (Qi, Si, yi)i=1:M of forecasting
queries and ground truth answers from an unknown distri-
bution pdata and a loss function ℓ on forecasting answers,
find a forecasting model ŷ that maps queries (Q,S) to an-
swers ŷ(Q,S) such that the expected loss between ground
truth answers and forecasted answers is minimal:

L(ŷ; pdata) := E(Q,S,y)∼pdata

[
ℓ(y, ŷ(Q,S))

]
4 Sparsity Structure Graph Representation

We describe the proposed Sparsity Structure Graph repre-
sentation and convert the forecasting problem as an edge
weight prediction problem. Using this representation:

• We explicitly obtain the relationship between the chan-
nels and timepoints via observation values allowing the
inductive bias of the data to pass into the model.

• We elegantly handle the missing values in IMTS in the
observation space by connecting edges only for the ob-
served values.

Missing values represented by NaN-values are unsuited
for standard arithmetical operations. Therefore, they are of-
ten encoded by dedicated binary variables called missing
value indicators or masks: xn ∈ (R × {0, 1})C . Here,
(xn,c,1, 1) encodes an observed value and (0, 0) encodes a
missing value. Usually, both components are seen as differ-
ent scalar variables: the real value xn,c,1 and its binary miss-
ing value indicator / mask xn,c,2, the relation between both
is dropped and observations simply modeled as xn ∈ R2C .
The main motivation behind the proposed Sparsity Structure
Graph is to represent IMTS avoiding missing value indica-
tors in the observation space.

We propose a novel representation of a time series S us-
ing a bipartite graph G = (V,E). The graph has nodes for
channels and timepoints, denoted as VC and VT respectively
(V = VC ∪̇ VT ). Edges E ⊆ VC × VT connect each chan-
nel node to its corresponding timepoint node with an obser-
vation. Edge features F edge are the observation values and
node features F node are the channel IDs and unique time-
points. Nodes VC := {1, . . . , C} represent channels and
nodes VT := {C + 1, . . . , C +N} represent timepoints:

V := {1, . . . , C +N} = VC ∪̇ VT

E :=
{
{i, j} | xi−C,j ̸= NaN, i ∈ VT , j ∈ VC

}
F node
v :=

{
v : v ∈ VC

tj : v ∈ VT , j = v − C

F edge
e := xi−C,j for e = {i, j} ∈ E with i ∈ VT , j ∈ VC

(2)

For an IMTS, missing values make the bipartite graph
sparse, meaning |E| ≪ C · N . However, for a fully ob-
served time series, where there are no missing values, i.e.
|E| = C ·N , the graph is a complete bipartite graph.

We extend this representation to time series queries (S,Q)
by adding additional edges between queried channels and
timepoints, and distinguish observed and queried edges by
an additional binary edge feature called target indicator.
Note that the target indicator used to differentiate the ob-
served edge and target edge is different from the missing
value indicator which is used to represent the missing ob-
servations in the observation space. Given a query Q =
(qk, ck)k=1:K , let (t′1, . . . , t

′
K′) be an enumeration of the

unique queried timepoints qk. We introduce additional nodes
VQ := {C+N+1, . . . , C+N+K ′} so that the augmented
graph, together with the node and edge features is given as

V := VC ∪̇ VT ∪̇ VQ = {1, . . . , C +N +K ′}
E :=

{
{i, j} | xi−C,j ̸= NaN, i ∈ VT , j ∈ VC

}
∪
{
{i, j} | i ∈ VQ, j ∈ VC , (t

′
i−N−C , j) ∈ Q

}
F node
v :=


v : v ∈ VC

tj : v ∈ VT , j = v − C

t′j : v ∈ VQ, j = v − C −N

F edge
e :=

{
(xi,j,1, 1) : e = {i, j} ∈ E, i ∈ VT , j ∈ VC

(0, 0) : e = {i, j} ∈ E, i ∈ VQ, j ∈ VC

(3)

where (t′i−N−C , j) ∈ Q is supposed to mean that
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Figure 3: Overall architecture of GraFITi. First a Sparsity Structure Graph is created from the given IMTS using TS2Graph.
Then, we update edge and node embeddings using L many gnn layers. Final predictions are made using Graph2TS.

(t′i−N−C , j) appears in the sequence Q. To denote this graph
representation, we write briefly

ts2graph(X,Q) := (V,E, F node, F edge) (4)

The conversion of an IMTS to a Sparsity Structure Graph is
shown in Figure 2.

To make the graph representation (V,E, F node, F edge) of
a time series query processable by a graph neural network,
node and edge features have to be properly embedded, oth-
erwise, both, the nominal channel ID and the timepoint are
hard to compute on. We propose an Initial Embedding
layer that encodes channel IDs via a onehot encoding and
time points via a learned sinusoidal encoding (Shukla and
Marlin 2021):

hnode,0
v :=

{
FF(onehot(F node

v )) : v ∈ VC

sin(FF(F node
v )) : v ∈ VT ∪̇ VQ

(5)

hedge,0
e := FF(F edge

e ) for e ∈ E (6)

where onehot denotes the binary indicator vector and FF
denotes a separate fully connected layer in each case.

The final graph neural network layer (hnode,L, hedge,L) has
an embedding dimension 1. The scalar values of the query
edges are taken as the predicted answers to the encoded fore-
casting query:

ŷ := graph2ts(hnode,L, hedge,L, V, E) = (hedge,L
ek

)k=1:K

where ek = {C +N + k′, ck} with t′k′ = qk (7)

5 Forecasting with GraFITi
GraFITi first encodes the time series query to graph using
Eq. 4 and compute initial embeddings for the nodes (hnode,0)
and edges (hedge,0) using Eqs. 5 and 6 respectively. Now, we
can leverage the power of graph neural networks for further
processing the encoded graph. Node and edge features are
updated layer wise, from layer l to l+1 using a graph neural
network:

(hnode,l+1, hedge,l+1) := gnn(l)(hnode,l, hedge,l, V, E) (8)

There have been a variety of gnn architectures such as
Graph Convolutional Networks (Kipf and Welling 2017),
Graph Attention Networks (Velickovic et al. 2017), pro-
posed in the literature. In this work, we propose a model

adapting the Graph Attention Network (Velickovic et al.
2017) to our graph setting and incorporate essential compo-
nents for handling sparsity structure graphs. While a Graph
Attention Network computes attention weights by adding
queries and keys, we found no advantage in using this ap-
proach. Thus, we utilize standard attention mechanism, in
our attention block. Additionally, we also use edge embed-
dings in our setup to update node embeddings in a principled
manner.

5.1 Graph Neural Network (gnn)
First, we define Multi-head Attention block (MAB) and
Neighborhood functions that are used in our gnn.

A Multi-head attention block (MAB) (Vaswani et al.
2017) is represented as:

MAB(Q,K,V) := α(H+ FF(H))

where H := α(Q+ MHA(Q,K,V)) (9)

where Q,K and, V are called queries, keys, and values
respectively, MHA is multi-head attention (Vaswani et al.
2017), α is a non-linear activation.

The Neighborhood of a node u is defined as the set of all
the nodes connected to u through edges in E:

N (u) := {v | {u, v} ∈ E} (10)

GraFITi consists of L gnn layers. In each layer, node em-
beddings are updated using neighbor node embeddings and
edge embeddings connecting them. For edge embeddings,
we use the embeddings of the adjacent nodes and the cur-
rent edge embedding. The overall architecture of GraFITi is
shown in Figure 3.

Update node embeddings To update embedding of a
node u ∈ V , first, we create a sequence of features Hu

concatenating its neighbor node embedding hnode,l
v and edge

embedding hedge,l
e , e = {u, v} where v ∈ N (u). We then

pass hnode,l
u as queries and Hu as keys and values to MAB.

hnode,l+1
u := MAB(l)

(
hnode,l
u , Hu, Hu

)
(11)

Hu :=
(
[hnode,l

v ∥ hedge,l
e ]

)
v∈N (u)

, e = {u, v} (12)

Updating edge embeddings: To compute edge embed-
ding hedge,l+1

e , e = {u, v} we concatenate hnode,l
u , hnode,l

v and



Algorithm 1: Graph Neural Network (gnn(l))

Require: hnode,l, hedge,l, V, E
for u ∈ V do

Hu ←
(
[hnode,l

v ∥ hedge,l
e ]

)
v∈N (u)

//e = {u, v}
hnode,l+1
u ← MAB(l)(hnode,l

u , Hu, Hu)
for e = {u, v} ∈ E do

hedge,l+1
e ← α

(
hedge,l
e + FF(l)

([
hnode,l
u ∥ hnode,l

v ∥ hedge,l
e

]))
return hnode,l+1, hedge,l+1

Algorithm 2: Forward pass of GraFITi

Require: Observed time series forecasting query (S,Q)
(V,E, Fnode, Fedge)← ts2graph(S,Q) //Eq. 4
//Initial embeddings of nodes and edges
hnode,0 ← {hnode,0

u | u ∈ V } //Eq. 5
hedge,0 ← {hedge,0

u,v | {u, v} ∈ E} //Eq: 6
//Graph Neural Network
for l ∈ {0, . . . , L− 1} do

hnode,l+1, hedge,l+1 ← gnn(l)(hnode,l, hedge,l, V, E) //Alg. 1
ŷ ← graph2ts(hnode,L, hedge,L, V, E) //Eq: 7
return ŷ

hedge,l
e , and pass it through a dense layer (FF) followed by a

residual connection and nonlinear activation.

hedge,l+1
e := α

(
hedge,l
e + FF(l)

(
hnode,l
u ∥ hnode,l

v ∥ hedge,l
e

))
(13)

where e = {u, v}. Note that, although edges are undirected,
edge embedding is computed by concatenating the embed-
dings in a specific order i.e., the channel embedding, time
embedding and edge embedding. We show the process of up-
dating nodes and edges in layer l using a gnnin Algorithm 1.

Answering the queries As mentioned in Section 4, our
last gnn(L) layer has embedding dimension 1. Hence, after
processing the graph features through L many gnn layers,
we use Eq. 7 to decode the graph and provide the predicted
answers to the time series query. A forward pass of GraFITi
is presented in Algorithm 2.

Computational Complexity The computational com-
plexity of GraFITi primarily comes from using MAB in
Eq. 11. For a single channel node u, the maximum complex-
ity for computing its embedding is N (u) since only neigh-
borhood connections are used for the update, and N (u) ⊆
{C+1, ..., C+N +K ′}. Thus, computing the embeddings
of all channel nodes is O(|E|). Similarly, the computational
complexity of MAB for computing the embeddings of all
nodes in VT ∪̇ VQ is also O(|E|).
Delineating from GRAPE (You et al. 2020) You et al.
(2020) introduced GRAPE, a graph-based model for imput-
ing and classifying vector datasets with missing values. This
approach employs a bipartite graph, with nodes divided into
separate sets for features and sample IDs. The edges of this
graph represent the feature values associated with the sam-
ples. Notably, GRAPE learns in a transductive manner, en-
compassing all the data samples, including those from the

Name #Sample #Chan Max. Max. Sparse
len. Obs.

USHCN 1,100 5 290 320 77.9%
MIMIC-III 21,000 96 96 710 94.2%
MIMIC-IV 18,000 102 710 1340 97.8%
Physionet’12 12,000 37 48 520 85.7%

Table 1: Statistics of the datasets used in the experiments.
Sparsity means the % missing observations in the time series

test set, within in the graph. In contrast, GraFITi uses an in-
ductive approach. Here, each instance is a Sparsity Structure
Graph, tailored for time series data. In this structure, nodes
are divided into distinct sets for channels and timepoints,
while the edges are the time series observations.

6 Experiments
6.1 Dataset Description
4 datasets including 3 medical and 1 synthetic climate IMTS
datasets are used for evaluating the proposed model. Basic
statistics of the datasets are provided in Table 1.

Physionet’12 (Silva et al. 2012) consists of ICU patient
records observed for 48 hours. MIMIC-III (Johnson et al.
2016) is also a medical dataset that contains measurements
of the ICU patients observed for 48 hours. MIMIC-IV (John-
son et al. 2021) is built upon the MIMIC-III database.
USHCN (Menne, Williams Jr, and Vose 2015) is a climate
dataset that consists of the measurements of daily tempera-
tures, precipitation and snow observed over 150 years from
1218 meteorological stations in the USA. For MIMIC-III,
MIMIC-IV and USHCN, we followed the pre-processing
steps provided by Scholz et al. (2023); Biloš et al. (2021);
De Brouwer et al. (2019). Hence, observations in MIMIC-III
and MIMIC-IV are rounded for 30 mins and 1 min respec-
tively. Whereas for the Physionet’12, we follow the protocol
of Che et al. (2018); Cao et al. (2018); Tashiro et al. (2021)
and processed the dataset to have hourly observations.

6.2 Competing Algorithms
We select 4 IMTS forecasting models for comparison, in-
cluding GRU-ODE-Bayes (De Brouwer et al. 2019), Neural
Flows (Biloš et al. 2021), CRU (Schirmer et al. 2022) and
LinODENet (Scholz et al. 2023). Additionally, we use the
well established IMTS interpolation model mTAN (Shukla
and Marlin 2021). It is interesting to verify the performance
of well established MTS forecasting models for IMTS setup.
We do this by adding missing value indicators as sep-
arate channels to the series and process the time series
along with the missing value indicators. Hence we com-
pare with the Informer+, Fedformer+, DLinear+ and NLin-
ear+ which are variants of Informer (Zhou et al. 2021), Fed-
Former (Zhou et al. 2022), DLinear and NLinear (Zeng et al.
2022) respectively. We also compare with the published re-
sults from (De Brouwer et al. 2019) for the NeuralODE-
VAE (Chen et al. 2018), Sequential VAE (Krishnan, Shalit,
and Sontag 2015, 2017), GRU-Simple (Che et al. 2018),
GRU-D (Che et al. 2018) and T-LSTM (Baytas et al. 2017).



USHCN MIMIC-III MIMIC-IV Physionet’12
DLinear+ 0.347 ± 0.065 0.691 ± 0.016 0.577 ± 0.001 0.380 ± 0.001
NLinear+ 0.452 ± 0.101 0.726 ± 0.019 0.620 ± 0.002 0.382 ± 0.001
Informer+ 0.320 ± 0.047 0.512 ± 0.064 0.420 ± 0.007 0.347 ± 0.001
FedFormer+ 2.990 ± 0.476 1.100 ± 0.059 2.135 ± 0.304 0.455 ± 0.004
NeuralODE-VAE (0.960 ± 0.110) (0.890 ± 0.010) − −
Sequential VAE (0.830 ± 0.070) (0.920 ± 0.090) − −
GRU-Simple (0.750 ± 0.120) (0.820 ± 0.050) − −
GRU-D (0.530 ± 0.060) (0.790 ± 0.060) − −
T-LSTM (0.590 ± 0.110) (0.620 ± 0.050) − −
mTAN 0.300 ± 0.038 0.540 ± 0.036 ME 0.315 ± 0.002
GRU-ODE-Bayes 0.401 ± 0.089 0.476 ± 0.043 0.360 ± 0.001 0.329 ± 0.004

(0.430 ± 0.070) (0.480 ± 0.010) (0.379 ± 0.005) −
Neural Flow 0.414 ± 0.102 0.477 ± 0.041 0.354 ± 0.001 0.326 ± 0.004

− (0.490 ± 0.004) (0.364 ± 0.008) −
CRU 0.290 ± 0.060 0.592 ± 0.049 ME 0.379 ± 0.003
LinODEnet 0.300 ± 0.060 0.446 ± 0.033 0.272 ± 0.002 0.299 ± 0.001

(0.290 ± 0.060) (0.450 ± 0.020) (0.274 ± 0.002) −
GraFITi (ours) 0.272 ± 0.047 ↑ 9.3% 0.396 ± 0.030 ↑ 11.2% 0.225 ± 0.001 ↑ 17.2% 0.286 ± 0.001 ↑ 4.3%

Table 2: Forecasting next three time steps. Evaluation metric MSE, Lower is better. Best results are in bold. Published results
are in open brackets, Physionet’12 dataset was not used by the baseline models hence do not have published results. ↑ indicates
% improvement by GraFITi. ‘ME’ indicates Memory Error.

6.3 Experimental Setup
Task protocol We followed Scholz et al. (2023); Biloš
et al. (2021); De Brouwer et al. (2019), applied 5-fold cross-
validation and selected hyperparameters using a holdout val-
idation set (20%). For evaluation, we used 10% unseen data.
All models were trained on Mean Squared Error, which is
also the evaluation metric.

Hyperparamter search We searched the following hy-
perparameters for GraFITi: L ∈ {1, 2, 3, 4}, #heads in
MAB from {1, 2, 4}, and hidden nodes in dense layers from
{16, 32, 64, 128, 256}. We randomly sampled sets of 5 dif-
ferent hyperparameters and choose the one that has the best
performance on validation dataset. We used the Adam opti-
mizer with learning rate of 0.001, halving it when validation
loss did not improve for 10 epochs. All models were trained
for up to 200 epochs, using early stopping with a patience
to 30 epochs. All the models were experimented using the
PyTorch library on a GeForce RTX-3090 GPU.

6.4 Experimental Results
First, we set the observation and prediction range of the
IMTS following (Scholz et al. 2023; Biloš et al. 2021;
De Brouwer et al. 2019). For the USHCN dataset, the model
observes for the first 3 years and forecasts the next 3 time
steps. For the medical datasets, the model observes for the
first 36 hours in the series and predicts the next 3 time steps.
The results, including the mean and standard deviation, are
presented in Table 2. The best result is highlighted in bold
and the next best in italics. Additionally, we also provide the
published results from (Scholz et al. 2023; Biloš et al. 2021;
De Brouwer et al. 2019) in brackets for comparison.

The GraFITi model is shown to be superior compared to
all baseline models across all the datasets. Specifically, in
the MIMIC-III and MIMIC-IV datasets, GraFITi provides
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Figure 4: Efficiency comparison: GraFITi, LinODEnet,
CRU, Neural Flows and GRU-ODE-Bayes.

around 11.2% and 17.2% improvement in forecasting ac-
curacy compared to the next best model LinODEnet. The
results on the USHCN dataset have high variance making it
challenging to compare the models on this dataset. However,
we experimented on it for completeness. Again, we achieve
the best result with 9.2% improvement compared to the next
best model. We note that, the MTS forecasting models that
are adapted for the IMTS task, perform worse than any of
the IMTS forecasting models demonstrating the limitation
of MTS models applied to IMTS tasks.

Efficiency comparison We compare the efficiency of
leading IMTS forecasting models: GraFITi, LinODEnet,



Obs. / Pred. GraFITi (ours) LinODEnet CRU Neural Flow GRU-ODE-Bayes ↑ %

MIMIC-III

24/12 0.438 ± 0.009 0.477 ± 0.021 0.575 ± 0.020 0.588 ± 0.014 0.591 ± 0.018 8.2%
24/24 0.491 ± 0.014 0.531 ± 0.022 0.619 ± 0.028 0.651 ± 0.017 0.653 ± 0.023 7.5%
36/6 0.457 ± 0.050 0.492 ± 0.019 0.647 ± 0.051 0.573 ± 0.043 0.580 ± 0.049 7.1%

36/12 0.490 ± 0.027 0.554 ± 0.042 0.680 ± 0.043 0.620 ± 0.035 0.632 ± 0.044 10.8%

MIMIC-IV

24/12 0.285 ± 0.001 0.335 ± 0.002 ME 0.465 ± 0.003 0.366 ± 0.154 14.9%
24/24 0.285 ± 0.002 0.336 ± 0.002 ME 0.465 ± 0.003 0.439 ± 0.003 15.1%
36/6 0.260 ± 0.002 0.309 ± 0.002 ME 0.405 ± 0.001 0.393 ± 0.002 15.9%

36/12 0.261 ± 0.005 0.309 ± 0.002 ME 0.395 ± 0.001 0.393 ± 0.002 15.5%

Physionet’12

24/12 0.365 ± 0.001 0.373 ± 0.001 0.435 ± 0.001 0.431 ± 0.001 0.432 ± 0.003 2.1%
24/24 0.401 ± 0.001 0.411 ± 0.001 0.467 ± 0.002 0.506 ± 0.002 0.505 ± 0.001 2.4%
36/6 0.319 ± 0.001 0.329 ± 0.001 0.396 ± 0.003 0.365 ± 0.001 0.363 ± 0.004 3.0%

36/12 0.347 ± 0.001 0.357 ± 0.001 0.417 ± 0.001 0.398 ± 0.001 0.401 ± 0.003 2.8%

Table 3: Experimental results on varying observation and forecasting ranges for the medical datasets. Evaluation measure is
MSE. Lower is better. Best results are in bold. ME indicates memory error.

CRU, Neural Flow, and GRU-ODE-Bayes. We evaluate
them in terms of both execution time (batch size: 64)
and MSE. The results, presented in Figure 4, show that
for datasets with longer time series like MIMIC-IV and
USHCN, GraFITi significantly outpaces ODE and flow-
based models. Specifically, GraFITi is over 5 times faster
than the fastest ODE model, LinODEnet. Even for shorter
time series datasets like Physionet’12 and MIMIC-III,
GraFITi remains twice as fast as LinODEnet.

Varying observation and forecast ranges This experi-
ment is conducted with two different observation ranges (24
and 36 hours) and two different prediction ranges for each
observation range. For the observation range of 24 hours, the
prediction ranges are 12 and 24 hours, and for the observa-
tion range of 36 hours, the prediction ranges are 6 and 12
hours. The results are presented in Table 3. Again GraFITi
is the top performer, followed by LinODENet. Significant
gains in forecasting accuracy are observed in the MIMIC-
III and MIMIC-IV datasets. On average, GraFITi improves
the accuracy of LinODEnet, the next best IMTS forecast-
ing model, by 8.5% in MIMIC-III, 15.5% in MIMIC-IV, and
2.6% in the Physionet’12 dataset. Models avoiding miss-
ing value indicators perform best in the related tasks such
as IMTS interpolation and classification (Horn et al. 2020;
Shukla and Marlin 2021, 2022; Yalavarthi, Burchert, and
Schmidt-Thieme 2023, 2022), we see the similar trend for
forecasting. Additionally, the Sparsity Structure Graph im-
proves model performance as, by design, it allows inductive
bias of the data flows through the model.

6.5 Limitations
The GraFITi model is a potential tool for IMTS fore-
casting. However, GraFITi faces a challenge when applied
to Asynchronous Time Series (AsTS) datasets. In such
datasets, channels are observed asynchronously at various
time points, resulting in disconnected sparse graphs. This
disconnection hinders the flow of information and can be
problematic when channels have a strong correlation to-
wards the forecasts as model may not be able to cap-
ture these correlations. It can be seen from Table 4 where
GraFITi is compared with the next best baseline model
LinODENet for varying sparsity levels using MIMIC-III

Model IMTS AsTS AsTS AsTS AsTS
+10% +50% +90%

GraFITi 0.396 0.931 0.845 0.547 0.413
LinODENet 0.446 0.894 0.815 0.581 0.452

Table 4: GraFITi with varying sparsity levels on MIMIC-III
dataset. ‘IMTS’ dataset refers to the actual dataset, ‘AsTS’
is a synthetic asynchronous time series dataset created by
observing only 1 channel at each time point. ‘AsTS + x%’ is
created by retrieving x% of the missing observations. Goal
is to observe 36 hours and forecast the next 3 time steps.

dataset. The performance of GraFITi deteriorates with in-
crease in sparsity levels and gets worst when the series be-
come asynchronous. The breaking point is dataset-specific,
as the model breaks when the graph is disconnected.

Moreover, the existing model cannot handle meta data as-
sociated with the IMTS. One possible solution to both the
challenges is to interconnect all the channel nodes includ-
ing meta data (assuming it as additional channel) if present,
and apply a distinct multi-head attention on them. This will
help to share the information among all the nodes even in
asynchronous setup. In future, we aim to enhance GraFITi
to handle AsTS datasets and meta data.

7 Conclusions

In this paper, we propose a Graph based model called
GraFITi for the forecasting of irregularly sampled time se-
ries with missing values (IMTS). First, we represent the time
series as a Sparsity Structure Graph with channels and ob-
servation times as nodes and observation measurements as
edges; and re-represent the task of time series forecasting as
an edge weight prediction problem in a graph. An attention
based architecture is used for learning the interactions be-
tween the nodes and edges in the graph. We experimented
on 4 datasets including 3 real world and 1 synthetic dataset
for various observation and prediction ranges. The exten-
sive experimental evaluation demonstrates that the proposed
GraFITi provides superior forecasts compared to the state-
of-the-art IMTS forecasting models.
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Biloš, M.; Sommer, J.; Rangapuram, S. S.; Januschowski,
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