
Tripletformer for Probabilistic Interpolation of
Irregularly sampled Time Series

Vijaya Krishna Yalavarthi
ISMLL, University of Hildesheim

Germany
yalavarthi@ismll.uni-hildesheim.de

Johannes Burchert
ISMLL, University of Hildesheim

Germany
burchert@ismll.uni-hildesheim.de

Lars Schmidt-Thieme
ISMLL, University of Hildesheim

Germany
schimdt-thieme@ismll.uni-hildesheim.de

Abstract—Irregularly sampled time series data with missing
values is a observed in many fields like healthcare, astronomy,
and climate science. Interpolation of these types of time series
is crucial for tasks such as root cause analysis and medical
diagnosis, as well as for smoothing out irregular or noisy data.
To address this challenge, we present a novel encoder-decoder
architecture called “Tripletformer” for probabilistic interpolation
of irregularly sampled time series with missing values. This
attention-based model operates on sets of observations, where
each element is composed of a triple of time, channel, and value.
The encoder and decoder of the Tripletformer are designed with
attention layers and fully connected layers, enabling the model
to effectively process the presented set elements. We evaluate the
Tripletformer against a range of baselines on multiple real-world
and synthetic datasets and show that it produces more accurate
and certain interpolations. Results indicate an improvement in
negative loglikelihood error by up to 32% on real-world datasets
and 85% on synthetic datasets when using the Tripletformer
compared to the next best model.

Index Terms—Multivariate Time Series, Irregularly Sampled
Time Series with Missing Values, Probabilistic Interpolation

I. INTRODUCTION

In domains such as medical applications [1], multivariate
time series (MTS) are frequently observed with irregularity.
This implies that the variables (or sensors) within the time
series are observed at irregular time intervals and often contain
missing values during the alignment process. We refer to
such time series as Irregularly Sampled Time Series with
Missing Values (IMTS). Practitioners aim to identify data
that was not collected in the initial phase of data collection
for better analysis. As an example, blood glucose levels are
typically measured multiple times a day using a glucose
meter, but due to a patient’s forgetfulness or other reasons,
there may be missing data points. The healthcare provider
may want to determine the missing glucose level values
in order to better understand the patient’s glucose control
and make more informed treatment decisions. Probabilistic
interpolation models can be used to estimate the probable
values of the missing glucose level measurements, along
with the uncertainty surrounding the predictions allowing
the healthcare provider to avoid overly confident predictions.
Furthermore, considering that sensor observations inherently

Fig. 1: Interpolation in Multivariate Time Series (a) and
Irregularly sampled Time Series (b). In (a) all the channels in
the time series are observed at times t1, t2, t5, t6 and we need
to interpolate the values for all the channels at t3, t4. Where as
in (b), channel 1 is observed at times t1, t6, t8, and channel 3 is
observed at t2, t7. We did not make any observation in channel
2. However, we need to interpolate the values for channels 1,2
and 3 at time points t3, t4, and t5 respectively.

involve measurement errors, it becomes essential to quantify
the uncertainty associated with interpolated predictions. This
is particularly important in diverse fields such as engineering
and environmental applications [2].

Deep learning models have been widely studied for impu-
tation tasks in general multivariate time series (MTS) with
missing values, where the time series is observed at regular
intervals, the sparsity (number of missing values over the
number of observed values) is small, and all the channels are of
equal lengths. However, these models are not well suited for
irregularly sampled time series with missing values (IMTS)
due to their unique properties. IMTS often consist of non-
periodic observations in a channel, extremely sparse channels
when trying to align the IMTS, and variable channel lengths
in a single example. These properties make modeling IMTS
difficult for standard deep learning models. Figure 1 illustrates
the differences between interpolation in IMTS and MTS.

In the domain of IMTS, most research has focused on
classification techniques [3], [4], [5], [6], [7], [8], [9]. How-
ever, some studies have delved into the area of deterministic979-8-3503-2445-7/23/$31.00 ©2023 IEEE

interpolation [3], [10], [5], but a few on the probabilistic
interpolation. Gaussian Process Regression models [11], [12]
were used traditionally for the task [13]. Tashiro et. al.[14]
proposed a score based diffusion model, CSDI, however it
only produced homoscedastic variance meaning it provides
same uncertainty for all the outputs. Recently, Sukla et. al. [15]
introduced the Heteroscedastic Variational Autoencoder (HET-
VAE) which uses the Uncertainty aware multi Time Attention
Network (UnTAN) to produce heteroscedastic variance for
probabilistic interpolation in IMTS. HETVAE struggles to
effectively learn cross-channel interactions because its core
component UnTAN is built upon existing multi-Time Attention
Network (mTAN) [3] which employs a separate time attention
model for each channel. Through our experiments, we have
found that encoding observations from all channels using a
single encoder leads to more accurate interpolations.

In this work, we propose a novel encoder-decoder archi-
tecture, that we call Tripletformer for the probabilistic inter-
polation of IMTS . As the name suggests, our Tripletformer
operates on the observations that are in triplet form (time,
channel and value of the observation). We model time and
channel as the independent variables, and the observation
measurement (value) as the dependent variable. The encoder
of the Tripletformer learns the interactions among the inter
and intra channel observations of the IMTS simultaneously,
while the decoder produces the probability distributions of the
dependent variable over the set of reference (or target) inde-
pendent variables. We overcome the computational complexity
bottleneck of canonical attention by using induced multi-
head attention block [16] that has near linear computational
complexity (that we explain in Section III-E).

We evaluate the proposed Tripletformer over multiple 3 real-
world and 2 synthetic datasets at varying observation levels,
and two different missing patterns: random missing and burst
missing. The Tripletformer is compared with the state-of-the-
art probabilistic interpolation models, HETVAE and CSDI, and
a range of baselines using Negative Loglikelihood loss (NLL)
and CRPS as the evaluation metric. Our experimental results
attest that the proposed Tripletformer provides significantly
better interpolations compared to its competitors. Our contri-
butions are summarized as follows:

• We propose a novel model called Tripletformer that can
learn both inter and intra channel interactions simultane-
ously in the IMTS by operating on the observations for
probabilistic interpolation.

• To overcome the computational complexity of multi-head
attention, we employ an induced multi-head attention
mechanism [16]. This improves predictions while effi-
ciently addressing the computational bottleneck.

• We perform extensive experimental evaluation on 3 real
and 2 synthetic IMTS datasets, under two different miss-
ing patterns: random and burst missing. Our results attest
that Tripletformer provides up to 32% and 85% improve-
ment in NLL over real and synthetic IMTS datasets,
respectively compared to the next best model HETVAE.

We provide the implementation of Tripletformer in
https://github.com/yalavarthivk/tripletformer.

II. RELATED WORK

The focus of this work is on probabilistic interpolation of
irregularly sampled time series with missing values (IMTS).
Majority of the recent works in this field have mainly focused
on deterministic interpolation techniques for IMTS.

For example, [17] and [18] applied Multidirectional Re-
current Neural Network and Bidirectional Recurrent Neural
Networks for IMTS imputation by using a GRU decay (GRU-
D) [19] model as the underlying architecture to handle the
irregularity in the series. [8] proposed Interpolation-Prediction
networks, which consist of a semi-parametric model to share
information across multiple channels of an IMTS. This ap-
proach is similar to a multivariate Gaussian process [11], but
does not use a positive definite co-variance matrix.

These methods provide deterministic interpolation, which
means they cannot be used to find the uncertainty around
the predictions, as done in probabilistic interpolation. This
is a limitation of these models, as probabilistic interpolation
provides more information about the confidence of the pre-
dictions, which can be useful in many real-world applications.
The current work aims to propose a novel probabilistic inter-
polation method for IMTS.

Researchers have proposed various models for probabilistic
interpolation of time series data that utilize Variational Au-
toencoders (VAEs) and can produce homoscedastic variance,
which means the uncertainty in the predictions is constant
across all predictions. In 2018, [10] proposed using a Neural
Ordinary Differential Equations (ODE) network for modeling
time series by using a continuous time function in the hidden
state. Later, in 2019, [5] proposed an architecture with ODE-
RNN as the encoder which uses Neural ODE to model the
latent state dynamics and an RNN to update it when a new
observation is made. In 2020, [20] proposed using stochastic
differential equations (SDEs) which generalize ODEs and are
defined using non-standard integrals, usually relying on Itô cal-
culus. In 2021, [21] proposed Neural ODE processes (NDPs)
by combining Neural ODEs with Neural Processes [22]. NDPs
are a class of stochastic processes that are determined by a
distribution over Neural ODEs. Other than ODE based mod-
els, [3] proposed Multi-Time Attention Networks (mTAN),
which uses a temporal attention network at both encoder and
decoder to produce deterministic interpolations. Recently in
2021, [14] a score based diffusion model called CSDI was
proposed. The main idea behind this model is to use a score
function to evaluate the likelihood of different imputations and
to select the one that is most accurate.

While VAE and diffusion-based models can produce ho-
moscedastic variance, it is also possible to produce het-
eroscedastic variance, where the uncertainty in the predic-
tions varies across different predictions. One approach to
producing heteroscedastic variance is to output the distribu-
tion parameters, rather than a fixed point estimate. Gaussian
Process Regression (GPR) [12] provides full joint posterior

Fig. 2: Demonstration of IMTS as set of observations.

distributions over interpolation outputs, which can be used
to produce heteroscedastic variance. GPR models can be
directly implemented on IMTS by applying one model for each
channel. Multi-task Gaussian Process [11] have been studied
for the multivariate setting but they require a positive definite
covariance matrix. In [13], Dürichen et.al., studied various
kernels for the Multi-task Gaussian Process for the analysis of
IMTS. Finally, HETVAE model, proposed in [15] is the first
work that deals with the problem of probabilistic interpolation
in IMTS and provides heteroscedastic variance. The HETVAE
model consists of an Uncertainty-aware multi-Time Attention
Networks (UnTAN) that uses a combination of probabilistic
and deterministic paths to output heteroscedastic variance.

In this work, an attention-based model called Tripletformer
is proposed for probabilistic interpolation of irregularly sam-
pled time series with missing values (IMTS). Tripletformer
operates on the set of observations and produces outputs with
heteroscedastic variance.

III. BACKGROUND AND PRELIMINARIES

A. IMTS as set of observations

Our set representation of IMTS follows [7]. Given an IMTS
dataset X = {Xn}Nn=1 of N many examples, an IMTS Xn

can be formulated as set of observations xn
i such that Xn =

{xn
1 , x

n
2 , ...x

n
|Xn|}. We omit superscript n when the context is

clear. Each observation xi is a triple consisting of time, chan-
nel and value (observation measurement), xi = (ti, ci, ui),
with ti ∈ T = {τ1, τ2, ..., τ|T |}, T being the set of all the
observation times in the series X , ci ∈ C = {1, 2, 3, ..., C},
C being the set of channels in all the IMTS dataset X . In
Figure 2, we demonstrate the representation of IMTS as set
of observations.

B. Probabilistic Interpolation of IMTS

In deterministic interpolation, one wants to estimate the
most probable value of the dependent variable. While deter-
ministic interpolation provides a single estimate, probabilistic
interpolation outputs the probability distribution that explains
the prediction’s uncertainty.

Given an Irregularly sampled time series X ∈ X , indepen-
dent variables (w = (t′, c′)) in the target observations that
are time t′ /∈ T , min(T) < t′ < max(T), channel indicator

c′ ∈ C; the goal is to predict the probability distribution of the
dependent variable u′ i.e., find P̂ r(u′|X,w).

Problem 1 (Probabilistic Interpolation in Time Series). Given
i) a dataset Dtrain ∼ ρ drawn from an unknown distribution
ρ, an instance ({x}∗, {x′}∗) ∈ Dtrain with x, x′ ∈ Ω, x =
(t, c, u), x′ = (t′, c′, u′), Ω = R+ × N × R; t, t′ ∈ [R+,R+],
t ̸= t′, ii) a loss function L : R × F → R example negative
loglikelihood loss, F denotes a probability distribution. Find
a model f : Ω∗ × R∗

+ × N∗ → F such that the expected loss
is minimized E({x}∗,{x′}∗)∼ρ L({u′}∗, f({x}∗, {(t′, c′)}∗)).

C. Multi-head Attention

Multi-head attention (MHA) [23] jointly attends different
positions from different representation spaces. MHA with h
many heads is defined as

MHA(q, k, v) = Concat(head1, ..., headh)θ
o (1)

where q ∈ RLq×dq , k ∈ RLk×dk , v ∈ RLk×dv are
called query, key and value sequences with lengths of Lq ,
Lk, Lk, and embedding dimension of dq , dk, dv respectively.
headi, i ≤ h is the ith head which is defined as:

headi = Att(qθqi , kθ
k
i , vθ

v
i) = Softmax(A)vθvi (2)

Att =
qθqi

(
kθki

)T
√
d

(3)

where θqi ∈ Rdq×d, θki ∈ Rdk×d, θvi ∈ Rdv×d and θo ∈
Rd×do are the learned parameters, d is the hidden dimension
of the projection spaces, and do is the dimension of the output
sequence after MHA.

Attention matrix (A) which requires multiplication of Lq×d
and Lk × d sized matrices has a computational complexity
of O(LqLkd). When both Lq and Lk are arbitrarily large,
computing A will be a bottleneck.

D. Multihead Attention Block (MAB)

MAB [23], [16] consists of two sublayers: i) Multihead
Attention (MHA) [23], and ii) a pointwise feed forward layer
(MLP) as shown in Figure 3(a). We have a residual connection
around both the sublayers.

MAB(q, k, v) = α(H + MLP(H))

where H = α(q + MHA(q, k, v)) (4)

with q, k, v being query, key and value sequences and, α is
a non-linear activation function.

In MHA, the attention matrix (A) which requires the
multiplication of Lq × d and Lk × d sized matrices has a
computational complexity of O(LqLkd). Lq , Lk, d are the
query length, key length and embedding dimensions respec-
tively. When both Lq and Lk are large, computing A will be a
bottleneck because of its quadratic computational complexity.

Fig. 3: Architectures of Multihead Attention Block (a) and
Induced Multihead Attention Block (b) [16]

E. Induced Multihead Attention Block (IMAB)

Because computing A in MHA is infeasible for long se-
quences, [16] proposed the Induced Multihead Attention Block
(IMAB) that consists of two MABs and l many dh dimensional
induced points h ∈ Rl×dh which are trainable parameters. In
IMAB, the attention happens as follows: first induced points
attend to the actual keys and values, later queries attend to the
induced points. IMAB is given as:

IMAB(q, k, v) = MAB(q,H,H)

where H = MAB(h, k, v) (5)

The architecture of IMAB is shown in Figure 3(b). The
computational complexity of the IMAB is O(Lqld + Lkld)
which is near linear when l ≪ Lq, Lk.

IMAB is the optimal choice of model because i) it reduces
the computational complexity and ii) provides learned re-
stricted attention phenomena. Probsparse attention [24] which
provides restricted attention is the widely used model for the
time series forecasting. It ranks the key tokens by their impact
on the query, and restricts its attention to the top-K tokens
only rather than the entire key set. It was shown that using
restricted attention provides similar or better results compared
to the canonical attention (see [24] for more details). However,
the main drawback of Probsparse attention is, it assumes the
lengths of all the series in a batch are equal which is not the
case while working with IMTS. In order to have a consistent
batch, we pad the series of smaller lengths with zeros, and the
sparse attentions treat observations and zero padding in the
same manner for sampling the important key tokens which is
incorrect. On the other hand, when we are operating on sets,
it is not trivial to find the key tokens that are important to the
query, manually. Hence, one can learn a set of clusters called
reference clusters (H in equation 5) using h that act as basis
for the restriction. Then, the queries attend to those reference
clusters rather than the entire key set.

IV. PROPOSED MODEL: TRIPLETFORMER

Our proposed Tripletformer holds an encoder-decoder archi-
tecture for the problem of probabilistic interpolation in IMTS.
The model utilizes the irregular sampling of observations by
operating on the observations directly.

Our encoder E, similar to that of the transformer
model [23], maps the input time series X which is a set
of s = |X| many observations {x1, ..., xs} to a set of con-
tinuous representations Z(e) = {z(e)1 , ..., z

(e)
s } corresponding

to X . Our decoder outputs the parameters of the probability
distribution of the target observation value P̂ r(u′|Z(e), w)
conditioning up on the encoder output Z(e), and independent
variables w = (t′, c′) of the target observation x′. The
architecture of the proposed model is shown in Figure 4.
The model components are explained in more detail in the
following sections of the paper.

A. Encoder

Our encoder consists of i) an input feed forward embedding
layer (iFF) and ii) a Self-attention layer (SA) which is an
IMAB.

The iFF in the encoder is a point-wise feed-forward layer
that provides learned embeddings to the set elements. To
be able to work with the iFF , each observation x in the
input time series X is converted into a vector x ∈ RC+2

by concatenating the time, channel indicator, and value of
the observation. The channel indicator is one-hot encoded.
The iFF takes the set of vectors X as input and outputs its
embeddings Y (e) = y

(e)
1 , ..., y

(e)
s . These input embeddings are

then passed through a Self-Attention layer SA which consists
of L Induced Multihead Attention Blocks. This produces the
latent embeddings Z(e) = z

(e)
1 , ..., z

(e)
s .

Using an attention mechanism is a principled approach for
the interpolation problem in IMTS. In IMTS, the length of
a series (size of the set) varies, and a model that does not
depend on the length of the series is needed in order to learn
the latent embeddings. One could sort the set elements over
time and apply a Convolutional Neural Network (CNN) or
Recurrent Neural Network (RNN), but these methods are not
useful for interpolation tasks because the query time point is in
between the observation times where convolution (or RNN) is
already applied. The attention mechanism, on the other hand,
allows each observation to attend to all other observations in
the set, making it an ideal choice for interpolation tasks.

B. Decoder

The decoder takes the encoder output Z(e), and r many
target queries W = (w1, ..., wr) as inputs. It then outputs the
distribution parameters of the target values U ′ = u′

1, ..., u
′
r.

Specifically, the decoder outputs M = µ1, ..., µr, and Σ =
σ1, ..., σr which are the corresponding mean and standard
deviation assuming the underlying distribution is Gaussian. In
the current work we assume that the underlying distribution is
Gaussian but one could output any parametric distribution by
simply changing the loss function and the output nodes.

Our decoder consists of three main components: i) a target
feed forward embedding layer (tFF), ii) a Cross-attention
block (CA) and iii) an output layer (O). The tFF layer
maps the target queries to a set of continuous representations,
the CA block applies attention mechanism to align the target
representations with encoder output, and the O layer produces
the mean and standard deviation of the target values.

The target embedding layer tFF is a point wise feed
forward layer that provides latent representation to the learned
embedding of the target query. For a target query w ∈ W ,

Fig. 4: Tripletformer architecture. Encoder (left) takes the set
of observations X , and output their embeddings Z(e). Decoder
(right) takes Z(e), target queries (W), and produces the mean
M and standard deviation Σ corresponding to W .

we concatenate the time t′ and channel indicator c′ (one
hot encoding), and get w ∈ RC+1. W = {w1, ...,wr}
is passed through tFF to obtain their latent representation
Y (d) = {y(d)1 , ..., y

(d)
r }. The Cross-attention layer (CA) takes

the Y (d) as query, and Z(e) as keys and values for a MAB,
and outputs the learned embeddings Z(d) = {z(d)1 , ..., z

(d)
r }.

Finally, Z(d) is passed through the output layer O which is
a feed forward layer with two output heads. The output layer
produces the distribution parameters M and Σ corresponding
to the elements present in W . We assume, for a predictor w ∈
W , P̂ r(u′|X,w) defines the final probability distribution of u′

(target observation value) with P̂ r(u′|X,w) = N (u′;µ, σ).
The following equations describe the flow of data in the

model. EΛ indicates embedding dimension of layer Λ with
Λ ∈ {iFF, SA, tFF,CA}.

iFF : X 7→ Y (e)
(
∈ Rs×EiFF

)
(6)

SA : Y (e) 7→ Z(e)
(
∈ Rs×ESA

)
(7)

tFF : W 7→ Y (d)
(
∈ Rr×EtFF

)
(8)

CA : Y (d), Z(e) 7→ Z(d)
(
∈ Rr×ECA

)
(9)

O : Z(d) 7→ M,Σ (∈ Rr,R+
r) (10)

u′ ∼ P̂ r(u′|X,w) = N (u′;µ, σ), (11)
where w = (t′, c′) ∈ W, µ ∈ M, σ ∈ Σ

In certain transformer models [23], [24] for time series
forecasting, the decoder employs a self-attention layer on
target query embeddings. This introduces a transductive bias
among independent variables (covariates). In our study, we
lack covariates apart from observation time and channel. As
a result, self-attention among target queries is unnecessary.
Additionally, applying positional embeddings [23] to both
encoder and decoder inputs is not needed. Our triplet already
includes time and channel data, which naturally serves as
positional embeddings for observations.

In the proposed Tripletformer, we use IMAB in encoder
and MAB in the decoder. Although IMAB can be used for
both Self-attention (in the encoder) and Cross-attention (in the
decoder), we observed that using IMAB for Cross-attention
is not providing consistent advantage over MAB in terms of
prediction accuracy (see Section V-I2).

C. Supervised learning

Our Tripletformer works in a heteroscedastic manner out-
putting probability distribution for each query. We assume that
the data is following a Gaussian distribution, and use NLL as
the main loss for training the model. In addition to NLL, we
also use mean square error as the augmented loss in order to
avoid the model sticking in local optima when the mean is
almost flat after a few iterations. We optimize the following
loss function L:

L =

N∑
n=1

−E[log P̂ r(U ′n|Xn,Wn)] + λE||U ′n −Mn||22

with P̂ r(U ′n|Xn,Wn) =

rn∏
j=1

P̂ r(u′n
j |Xn, wn

j) (12)

V. EXPERIMENTS

TABLE I: Descrtiption of datasets used in our experiments.
Sparsity indicates the % of missing observations when the
time series is aligned.

Dataset #Sample #Channel Avg. sparsity Max.#obs. Min.#obs.
Physio’12 8,000 41 86 1154 29
MIMIC-III 21,000 17 67 1143 7
Physio’19 40,100 38 81 3080 13
PenDigits 11,000 11 80 8 8
Phon.Spec. 6700 5 91 217 217

A. Datasets

We use the following real world IMTS datasets: Phys-
ionet2012 [25], [26] Data from 8,000 ICU patients, covering
up to 41 measurements taken within the first 48 hours after
admission. MIMIC-III [27] ICU records from around 21,000
stays, featuring irregularly sampled measurements and 17
observed variables. Dataset split using procedures from [7],
[28]. Physionet2019 [29] For sepsis early detection, data from
about 40,000 ICU samples across three U.S. hospitals, with 38
observed variables.

We also created two synthetic datasets from real world MTS
namely PenDigits and PhonemeSpectra [30] (see Section V-F)
in order to verify the performance of the TripletFormer in
extremely sparse scenario. We provide basic statistics of the
datasets used for experiments in Table I.

B. Competing Models

Our Tripletformer competes with the following models.
First, we compare with deterministic models that were made
probabilistic by adding a homoscedastic variance which is a
hyperparameter searched on the validation dataset.

Mean Imputation always predicts the mean value of the
channel in the training dataset. Forward Imputation predicts

TABLE II: Results on real IMTS datasets, observations miss-
ing at random. Evaluation measure is NLL, lower the best.

Obeserved % 10% 50% 90%

Mean 1.406 1.406 1.402
Forward 1.371 1.217 1.164
GPR 0.956±0.001 0.767±0.006 0.798±0.004

M-GPR 1.249±0.005 1.191±0.020 1.197±0.055

Physionet L-ODE-RNN 1.268±0.012 1.233±0.027 1.280±0.029

2012 L-ODE-ODE 1.211±0.001 1.168±0.001 1.170±0.003

mTAN 1.110±0.000 0.934±0.001 0.923±0.002

HETVAE 0.849±0.008 0.578±0.005 0.551±0.011

Tripletformer 0.780±0.013 0.455±0.011 0.373±0.040
% Improvement 8.1% 21.2% 32.3%

MIMIC-III

Mean 1.508 1.508 1.507
Forward 1.750 1.423 1.328
GPR 1.201±0.003 0.979±0.006 0.919±0.001

M-GPR 1.695±0.041 1.302±0.068 1.297±0.121

mTAN 1.209±0.000 1.066±0.001 1.065±0.001

HETVAE 1.077±0.003 0.828±0.001 0.774±0.008

Tripletformer 1.056±0.006 0.789±0.006 0.710±0.010
% Improvement 1.9% 4.7% 8.3%
Mean 1.421 1.420 1.425
Forward 1.361 1.205 1.433

Physionet GPR 1.136±0.000 0.907±0.012 0.851±0.007

2019 mTAN 1.152±0.001 0.988±0.002 0.982±0.006

HETVAE 1.091±0.001 0.855±0.002 0.835±0.005

Tripletformer 1.079±0.001 0.806±0.004 0.752±0.007
% Improvement 1.1% 5.7% 9.9%

the value of the previous observation in the channel. If there
is no value observed in that particular channel, which is
usual for IMTS, we impute with zero. L-ODE-RNN [10] is
a Neural Ordinary Different Equation (ODE) model where
the decoder is an ODE-RNN while the encoder is made of
an RNN. L-ODE-ODE [5] is also an ODE model where
the encoder consists of an ODE-RNN instead of an RNN.
mTAN [3], Multi-Time attention Network that provides state-
of-the-art results for deterministic interpolation, uses time
attention networks for the series encoding and decoding.

We also compare with the following probabilistic models:
GPR [12] is the Gaussian Process regression modality where
one model is trained per channel, M-GPR [13] is a multi-task
Gaussian Process model where all the channels are trained
simultaneously using a single architecture employing convo-
lution of kernels, HETVAE [15], Heteroscedastic Temporal
Variational Autoencoder for Irregular Time Series (HETVAE)
is the state-of-the-art probabilistic interpolation model for
IMTS. CSDI [14], a continuous score based model for prob-
abilistic imputation of IMTS was evaluated for Continuous
Ranked Probability Score (CRPS). Hence, we did a separate
experiment to compare TripletFormer with CSDI for CRPS.

C. Experimental Setup

We randomly split each dataset into train and test with 80%
and 20% samples. Further 20% of the train set is used as
validation set. We search the following hyperparameters: L ∈
{1, 2, 3, 4}, hidden units in MLP layers (feed forward layers
in both encoder and decoder) from {64, 128, 256}, attention
layers dimension from {64, 128, 256}, number of induced
points in IMAB from {16, 32, 64, 128}, and λ augmented
loss weight from {0, 1, 5, 10}. Similar to [7], we trained all
the competing models for 5 different random hyperparameter

TABLE III: Results of bursts of observations missing on real
IMTS datasets. Evaluation measure is NLL, lower the best.

Obeserved % 10% 50% 90%

Mean 1.412 1.382 1.407
Forward 1.534 1.442 1.232
GPR 1.127±0.018 0.983±0.002 0.691±0.001

M-GPR 1.351±0.023 1.255±0.037 1.221±0.030

Physionet L-ODE-RNN 1.270±0.002 1.382±0.006 1.289±0.011

2012 L-ODE-ODE 1.263±0.000 1.242±0.002 1.243±0.001

mTAN 1.200±0.000 1.141±0.001 0.960±0.001

HETVAE 1.028±0.011 0.882±0.002 0.614±0.039

Tripletformer 0.925±0.005 0.777±0.013 0.578±0.034
% Improvement 11.1% 11.9% 5.8%

MIMIC-III

Mean 1.509 1.507 1.515
Forward 1.870 1.608 1.412
GPR 1.328±0.000 1.231±0.004 1.000±0.039

M-GPR 1.637±0.08 1.42±0.131 1.535±0.138

mTAN 1.319±0.001 1.247±0.000 1.094±0.002

HETVAE 1.210±0.000 1.126±0.003 0.939±0.009

Tripletformer 1.193±0.003 1.087±0.006 0.885±0.032
% Improvement 1.4% 3.6% 5.8%
Mean 1.425 1.415 1.419
Forward 1.466 1.368 1.209

Physionet GPR 1.257±0.001 1.049±0.002 0.975±0.005

2019 mTAN 1.269±0.001 1.113±0.001 1.042±0.002

HETVAE 1.241±0.001 1.012±0.004 0.949±0.002

Tripletformer 1.222±0.001 0.977±0.005 0.865±0.009
% Improvement 1.5% 3.5% 8.9%

setups, and chose the one that has the least NLL on the
validation dataset. We independently run the experiments for
5 times using the best hyperparameters and different random
seeds. We code all the models using PyTorch, and trained on
NVIDIA GeForce RTX 3090 GPUs.

Data preprocessing: We found that some observations in
the datasets contain errors. For example, in the Physionet
dataset, we noticed that some of the Ph Value readings were
around 700 which is outside the normal range of 0 to 14.
To address this issue, we implemented a standard practice
for handling real-world IMTS datasets by identifying and
removing observations that fall outside the 99.9th percentile
of the observation range in the training data. To further
preprocess the data, we also rescaled the time values between
0 and 1 for all datasets and standardized each channel to the
standard normal distribution.

D. Task setting

In the experiments, we considered two types of setups for
the interpolation task.

Random missing: In this setup, we assume that the sensors
are missed at random time points. Hence we condition on the
random time points and predict the observation values of all
the available channels for the remaining time points.

Burst missing: Here, we assume that the sensors are not
observed for a series of time points. We randomly choose a
start time point, and use p many time points after that for
prediction by conditioning upon the remaining.

E. Results on real IMTS datasets

Our main experimental results using two different sampling
techniques on real IMTS datasets are presented below.

1) Results on random missing: In Table II, we present the
results for the random missing setup. Three different condi-
tioning ranges (observed %) which are 10%, 50% and 90% of
all the observations in the series were used. We could not run
ODE models on MIMIC-III and Physionet2019 datasets due
to high computational requirement. However, for the datasets
where they have been evaluated, ODE models performed
significantly worse than Tripletformer. Hence, it is safe to
assume that ODE models perform worse in the remaining
datasets as well. Similarly, we could not compute M-GPR on
Physionet2019 due to limited computational resources as it
requires computing the inverse of co-variance matrix.

As also observed in [15], we notice that M-GPR performs
worse than GPR. We see that our Tripletformer outperforms
all the competing models with a huge margin. Especially,
compared to the next best model, HETVAE, significant lifts
are observed in the Physionet2012 dataset.

We note that the published results [15] with 50% time
points in conditioning range using random missing for both
the Physionet2012 and MIMIC-III differ from ours. For the
Physionet2012, this can be attributed to the following: 1)
in [15], the dataset was normalized using the parameters
computed on the entire dataset instead of training dataset, 2)
inclusion of erroneous observations in [15] (see Section V-C).
Also, we were not able to reproduce the results with the
preprocessing details provided in [15]. Whereas, for MIMIC-
III dataset, we could not extract the splits used in [15], hence
used another standard version [7], [28].

We would like to note that the proposed Tripletformer
is scalable to the large time series datasets. IMAB con-
sists of near-linear computational complexity as explained in
Section III-E making the model scalable. As an example,
Tripletformer can seamlessly process Physionet2019 dataset
which has up to 3080 observations.

2) Results on burst missing: We present the results for
burst sampling in Table III. Interpolating the burst missing
values is a difficult task compared to that of random missing.
Because, in burst missing, conditioning time points are far
from the query time point whereas in random sampling they
are close by. The results on burst sampling show a similar
pattern to random sampling. Our Tripletformer outperforms
all the models with a significant margin; HETVAE and GPR
are the second and third best models. We see significant lifts
in this setup as well compared to the state-of-the-art model,
HETVAE. Again, in Physionet2012 dataset with 50% of the
observations in the conditioning range, our Tripletformer has
around 12% improvement in NLL.

We perform a qualitative comparison of the predictions
made by the Tripletformer and HETVAE models in Figure 5.
We observe that the Tripletformer provides not only accurate
predictions but also with higher certainty which is desirable
in probabilistic interpolation.

F. Experiments with synthetic IMTS datasets

In this experiment, we see the performance of the competing
models in the extremely sparse setup. We set MTS to be

(a) Physionet2012, random (b) Physionet2012, burst

(c) MIMIC-III, random (d) MIMIC-III, burst

(e) Physionet2019, random (f) Physionet2019, burst

Fig. 5: Comparison of qualitative performance between
Tripletformer and HETVAE. Plots are the predictions (95th

quantile) of both the models for heart rate in all the three
datasets conditioned on the 50% of the time points.

TABLE IV: Results on synthetic IMTS, observations missing
at random. Evaluation measure is NLL, lower the best.

Obeserved % 10% 50% 90%

Mean 1.424 1.420 1.424
Forward 1.550 1.626 1.596
GPR 1.411±0.001 1.350±0.030 1.279±0.055

M-GPR 1.400±0.001 1.326±0.059 1.558±0.474

Pen L-ODE-RNN 1.285±0.005 1.183±0.012 1.102±0.014

Digits L-ODE-ODE 1.307±0.001 1.182±0.002 1.108±0.004

mTAN 1.307±0.001 1.050±0.013 0.882±0.020

HETVAE 1.267±0.003 1.207±0.025 1.326±0.015

Tripletformer 1.115±0.003 0.693±0.019 0.463±0.027
% Improvement 11.9% 42.6% 65.1%
Mean 1.437 1.437 1.435
Forward 1.553 1.559 1.528
GPR 1.378±0.002 1.271±0.005 1.176±0.009

M-GPR 1.301±0.007 1.116±0.077 1.961±1.385

Phoneme L-ODE-RNN 1.327±0.006 1.289±0.010 1.263±0.025

Spectra L-ODE-ODE 1.304±0.002 1.273±0.006 1.264±0.008

mTAN 1.225±0.003 0.963±0.009 1.097±0.010

HETVAE 1.033±0.031 0.699±0.004 0.804±0.002

Tripletformer 0.923±0.008 0.413±0.005 0.115±0.024
% Improvement 10.7% 40.9% 85.7%

observed asynchronously meaning each senor is observed
independent of others. Hence, we assume that at every point
of time only one sensor is observed. From MTS, we randomly
chose one variable at a single point of time, and remove all
the remaining variables making the number of observations in
synthetic IMTS is same as the length of the source MTS.

For this, we choose PenDegits and PhonemeSpectra which
are the second and third largest datasets used in [30]. While the
largest dataset, FaceDetection, lacked variability in interpola-
tion results across models and sampling techniques, PenDigits
and PhonemeSpectra were chosen as suitable alternatives. Ex-
perimental results for random and burst sampling are presented
in Tables IV and V respectively. For PenDigits, both sampling
techniques yielded the same results due to the short time
series length when 90% of the series is observed. For both the

TABLE V: Results of synthetic IMTS for observations miss-
ing at burst. Evaluation measure is NLL, lower the best.

Obeserved % 10% 50% 90%

Mean 1.427 1.396 1.424
Forward 1.556 1.683 1.596
GPR 1.386±0.006 1.413±0.000 1.279±0.055

M-GPR 1.381±0.010 1.345±0.012 1.344±0.218

Pen L-ODE-RNN 1.271±0.002 1.184±0.005 1.144±0.007

Digits L-ODE-ODE 1.269±0.002 1.207±0.020 1.171±0.075

mTAN 1.277±0.002 1.061±0.004 0.882±0.023

HETVAE 1.270±0.001 1.188±0.006 1.326±0.033

Tripletformer 1.115±0.000 0.787±0.015 0.463± 0.027
% Improvement 12.2% 33.8% 65.1%
Mean 1.441 1.436 1.456
Forward 1.583 1.643 1.610
GPR 1.387±0.000 1.331±0.000 1.309±0.001

M-GPR 1.469±0.101 1.345±0.035 1.305±0.011

Phoneme L-ODE-RNN 1.389±0.010 1.356±0.013 1.309±0.002

Spectra L-ODE-ODE 1.367±0.001 1.343±0.002 1.290±0.001

mTAN 1.350±0.001 1.285±0.001 1.314±0.008

HETVAE 1.237±0.003 1.057±0.002 1.006±0.002

Tripletformer 1.180±0.008 1.025±0.005 0.975±0.009
% Improvement 4.6% 3.2% 3.1%

TABLE VI: Comparison of Tripletformer and HETVAE with
published results from [14] on Physionet2012 dataset and
random missing. Evaluation measure is CRPS, lower the best.
† indicates published results from [14].

Observed% 10% 50% 90%

L-ODE-ODE 0.761±0.010
† 0.676±0.003

† 0.700±0.002
†

mTAN 0.689±0.015
† 0.567±0.003

† 0.526±0.004
†

HETVAE 0.188±0.007 0.116±0.016 0.256±0.003

CSDI 0.556±0.003
† 0.418±0.001

† 0.380±0.002
†

Tripletformer 0.062±0.006 0.062±0.009 0.061±0.010

sampling types, and all the conditioning ranges, Tripletformer
provides superior interpolations.

The reason for the poor performance of the HETVAE on
synthetic datasets is the encoding of each channel separately.
We note that the medical datasets do not have significant
cross channel interactions compared to the synthetic IMTS
datasets making HETVAE shine comparatively better in the
former. However, for both synthetic and real IMTS datasets,
Tripletformer outperforms HETVAE significantly.

G. Comparison with CSDI [14]

CSDI is a score based diffusion model that produce prob-
abilistic outputs. Here, we compare the Tripletformer with
CSDI in terms of Continuous Ranked Probability Score
(CRPS) as shown in [14]. Because of huge computational
requirement of diffusion models, conducting experiments with
CSDI on all the datasets is beyond our computational re-
sources, hence, we compare both Tripletformer and HETVAE
on the published results from [14] in Table VI. For fair
comparison, we use the same data splits of Physionet2012
data that was given in [14]. We note that CSDI produces
outputs with homoscedastic variance similar to that of mTAN
and L-ODE-ODE. It an be observed that the Tripletformer
outperforms all the baseline models by significant margin for
the CRPS score as well. On an average, Tripletformer improves
the interpolation accuracy by 63% and 86% respectively
compared to HETVAE and CSDI models respectively.

H. Experiment on Deterministic Interpolation

TABLE VII: Comparison of competing models for deter-
ministic interpolation on Physionet2012 dataset and random
missing. Evaluation metric Mean Squared Error, lower the
best. † indicates published results from [3].

Model Mean Squared Error
(
×10−3

)
L-ODE-RNN 8.132±0.020

† 8.171±0.030
† 8.402±0.022

†

L-ODE-ODE 6.721±0.109
† 6.798±0.143

† 7.142±0.066
†

mTAN 4.139±0.029
† 4.157±0.053

† 4.798±0.036
†

HETVAE 4.200±0.500 4.945±0.000 4.600±0.000

Tripletformer 3.500±0.100 3.600±0.100 3.900±0.200

Observed % 50% 70% 90%

It is interesting to see the performance of Tripletformer for
the deterministic interpolation. We trained both Tripletformer
and HETVAE for predicting the mean value (optimized for
Mean Squared Error loss). Tripletformer is compared with
HETVAE [15] (probabilistic model), mTAN [3], L-ODE-
ODE [5] and L-ODE-RNN [10] models on Physionet2012
dataset for random missing setup in Table VII. While we
did an experiment for HETVAE, published results from [3]
were reported for mTAN and ODE models because we use
the same dataset splits provided by [3]. Notably Tripletformer
outperforms all the models with a significant margin for
deterministic interpolation as well, and reduced the mean
squared error of the next best model by 12% on an average.

I. Ablation Study
1) Tripletformer vs. TF-enc-MAB: In table VIII, we com-

pare the performance of Tripletformer with its variant Tf-
enc-MAB which consists of MAB in the encoder. We use
synthetic IMTS datasets for comparison because we could not
run Tf-enc-MAB on all the splits of real IMTS datasets. We
see that choosing IMAB instead of MAB in the encoder is
optimal. As mentioned in Section III-E, Tripletformer that has
IMAB in the encoder provides similar or better performance
compared to Tf-enc-MAB demonstrating the advantage of
restricted attention in IMAB. We see significant lifts when
conditioning range increases from 10% to 90%.

TABLE VIII: Comparing Tripletformer and Tf-enc-MAB. Tf-
enc-MAB is a variant of Tripletformer and consists of the
MAB in the encoder instead of the IMAB. Results of synthetic
IMTS. Evaluation measure is NLL, lower the best.

tp. obs. 10% 50% 90%
random sampling

Pen Tf-enc-MAB 1.117±0.001 0.713±0.009 0.551±0.026

Digits Tripletformer 1.115±0.003 0.693±0.019 0.463±0.027

Phoneme Tf-enc-MAB 0.966±0.010 0.626±0.142 0.504±0.156

Spectra Tripletformer 0.923±0.008 0.413±0.005 0.115±0.024

burst sampling
Pen Tf-enc-MAB 1.111±0.002 0.838±0.020 0.551±0.026

Digits Tripletformer 1.115±0.000 0.787±0.015 0.463± 0.027

Phoneme Tf-enc-MAB 1.205±0.009 1.035±0.004 1.019±0.026

Spectra Tripletformer 1.180±0.008 1.025±0.005 0.975±0.009

2) Tripletformer vs. Tf-dec-IMAB: We compare the Triplet-
former with Tf-dec-IMAB which is a variant of Tripletformer
where MAB is replaced with IMAB in the decoder. Compar-
isons are made using all the datasets for both random and burst

sampling and the results are presented in Table IX. We see
that, among 17 out of 30 comparisons Tripletformer performs
better. Among real IMTS datasets, Tf-dec-IMAB provides
better performance in burst sampling for MIMIC-III with 50%
and 90% time points and Physionet2019 in 90% time points in
conditioning range. Whereas Tripletformer has better perfor-
mance in Physionet2012 dataset for both sampling techniques
when conditioned up of 50% and 90% of the available time
points. We see similar behavior for synthetic IMTS datasets
as well. While Tf-dec-IMAB performs better for PenDigits,
Tripletformer performs better in PhonemeSpectra. We see that
though Tf-dec-IMAB predicts well in some scenarios, on an
average Tripletformer provide around 5% less error.

TABLE IX: Comparing Tripletformer and Tf-dec-MAB (vari-
ant of Tripletformer, consists the IMAB in the decoder instead
of the MAB). Evaluation measure is NLL, lower the best.

tp. obs. 10% 50% 90%
random sampling

Physionet’12 Tf-dec-IMAB 0.845±0.015 0.565±0.05 0.703±0.092

Tripletformer 0.780±0.013 0.455±0.011 0.373±0.040

MIMIC-III Tf-dec-IMAB 1.053±0.037 0.783±0.01 0.735±0.018

Tripletformer 1.056±0.006 0.789±0.006 0.710±0.010

Physionet’19 Tf-dec-IMAB 1.061±0.003 0.796±0.002 0.797±0.017

Tripletformer 1.079±0.001 0.806±0.004 0.752±0.007

Pen Tf-dec-IMAB 1.113±0.001 0.717±0.028 0.386±0.054
Digits Tripletformer 1.115±0.003 0.693±0.019 0.463±0.027

Phoneme Tf-dec-IMAB 0.951±0.009 0.570±0.174 0.249±0.042

Spectra Tripletformer 0.923±0.008 0.413±0.005 0.115±0.024

burst sampling

Physionet’12 Tf-dec-IMAB 0.946±0.007 0.821±0.008 0.794±0.023

Tripletformer 0.925±0.005 0.777±0.013 0.578±0.034

MIMIC-III Tf-dec-IMAB 1.203±0.003 1.023±0.006 0.835±0.015
Tripletformer 1.193±0.003 1.087±0.006 0.885±0.032

Physionet’19 Tf-dec-IMAB 1.210±0.001 0.980±0.003 0.797±0.017

Tripletformer 1.222±0.001 0.977±0.005 0.865±0.009

Pen Tf-dec-IMAB 1.127±0.001 0.735±0.015 0.386±0.054
Digits Tripletformer 1.115±0.000 0.787±0.015 0.463± 0.027

Phoneme Tf-dec-IMAB 1.217±0.007 1.032±0.011 0.950±0.011
Spectra Tripletformer 1.180±0.008 1.025±0.005 0.975±0.009

J. Additional Experiments for deterministic interpolation

In Table X, we present the results for deterministic in-
terpolation on all the datasets for mTAN, HETVAE and
Tripletformer. We observe that Tripletformer provides best
performance in 24 out of 30 comparisons.

K. Discussions

While Tripletformer offers probabilistic interpolation using
parametric distributions, it is susceptible to performance degra-
dation if the assumed distribution mismatches the observed
data.

Additionally, Tripletformer focuses on providing marginal
distributions rather than joint distributions. The focus on joint
distributions can lead to variability in results when arbitrary
time points are included. To address these limitations, we plan
to develop a model that employs joint distributions, potentially
enhancing prediction smoothness and reducing variability for
random target times.

CONCLUSIONS

In this work, we propose a novel model called Tripletformer
for the problem of probabilistic interpolation in Irregularly
sampled Time Series with missing values (IMTS). Our Triple-
former consists of a transformer like architecture, operates on a
set of observations. We employ induced multi-head attention
block in the encoder in order to learn the restricted atten-
tion mechanism, and to circumvent the problem of quadratic
computational complexity of the canonical attention. We ex-
perimented on 5 real and synthetic IMTS datasets, various
conditioning ranges and 2 different sampling techniques: ran-
dom missing and burst missing. Our experimental results attest
that the proposed Tripletformer provides better interpolations
compared to the state-of-the-art model HETVAE.

ACKNOWLEDGMENTS

This work was supported by the Federal Ministry for Economic
Affairs and Climate Action (BMWK), Germany, within the frame-
work of the IIP-Ecosphere project (project number: 01MK20006D),
and Funded by the Lower Saxony Ministry of Science and Culture
under grant number ZN3492 within the Lower Saxony “Vorab” of
the Volkswagen Foundation and supported by the Center for Digital
Innovations (ZDIN).

REFERENCES

[1] P. Yadav, M. Steinbach, V. Kumar, and G. Simon, “Mining electronic
health records (ehrs) a survey,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, pp. 1–40, 2018.

[2] M. Lepot, J.-B. Aubin, and F. H. Clemens, “Interpolation in time series:
An introductive overview of existing methods, their performance criteria
and uncertainty assessment,” Water, vol. 9, no. 10, p. 796, 2017.

[3] S. N. Shukla and B. Marlin, “Multi-time attention networks for irreg-
ularly sampled time series,” in International Conference on Learning
Representations, 2021.

[4] S. C.-X. Li and B. Marlin, “A scalable end-to-end gaussian process
adapter for irregularly sampled time series classification,” Advances in
Neural Information Processing Systems 29, 2016.

[5] Y. Rubanova, R. T. Chen, and D. Duvenaud, “Latent odes for irregularly-
sampled time series,” Advances in Neural Information Processing Sys-
tems 32, 2019.

[6] P. Kidger, J. Morrill, J. Foster, and T. Lyons, “Neural con-
trolled differential equations for irregular time series,” arXiv preprint
arXiv:2005.08926, 2020.

[7] M. Horn, M. Moor, C. Bock, B. Rieck, and K. Borgwardt, “Set functions
for time series,” in International Conference on Machine Learning,
pp. 4353–4363, PMLR, 2020.

[8] S. N. Shukla and B. M. Marlin, “Interpolation-prediction networks for
irregularly sampled time series,” International Conference on Learning
Representations, 2019.

[9] V. K. Yalavarthi, J. Burchert, and L. Schmidt-Thieme, “DCSF: deep con-
volutional set functions for classification of asynchronous time series,”
in 9th IEEE International Conference on Data Science and Advanced
Analytics, DSAA 2022, Shenzhen, China, October 13-16, 2022, pp. 1–10,
IEEE, 2022.

[10] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” arXiv preprint arXiv:1806.07366, 2018.

[11] E. V. Bonilla, K. Chai, and C. Williams, “Multi-task gaussian process
prediction,” Advances in neural information processing systems, vol. 20,
2007.

[12] C. K. Williams and C. E. Rasmussen, Gaussian processes for machine
learning. MIT press Cambridge, MA, 2006.

[13] R. Dürichen, M. A. Pimentel, L. Clifton, A. Schweikard, and D. A.
Clifton, “Multitask gaussian processes for multivariate physiological
time-series analysis,” IEEE Transactions on Biomedical Engineering,
vol. 62, no. 1, pp. 314–322, 2014.

TABLE X: Results for deterministic interpolation on all datasets. Evaluation measure is Mean Squared Error, lower the best.

tp. obs. 10% 50% 90% 10% 50% 90%
random missing burst missing

Physionet
mTAN 0.530±0.001 0.377±0.001 0.368±0.002 0.646±0.001 0.569±0.002 0.392±0.001

HETVAE 0.549±0.001 0.378±0.001 0.343±0.002 0.635±0.002 0.567±0.002 0.331±0.001
Tripletformer 0.525±0.006 0.372±0.007 0.331±0.011 0.627±0.001 0.554±0.004 0.335±0.003

MIMIC-III
mTAN 0.661±0.001 0.477±0.001 0.474±0.001 0.805±0.001 0.710±0.001 0.511±0.001

HETVAE 0.676±0.001 0.472±0.001 0.430±0.001 0.804±0.002 0.727±0.002 0.446±0.000
Tripletformer 0.646±0.023 0.462±0.017 0.414±0.008 0.788±0.002 0.684±0.001 0.448±0.002

Physionet2019
mTAN 0.581±0.002 0.419±0.002 0.415±0.005 0.737±0.001 0.541±0.001 0.461±0.002

HETVAE 0.593±0.000 0.410±0.001 0.350±0.000 0.744±0.005 0.515±0.000 0.485±0.002

Tripletformer 0.585±0.001 0.392±0.001 0.371±0.003 0.591±0.009 0.392±0.001 0.370±0.003

PenDigits
mTAN 0.783±0.004 0.453±0.007 0.335±0.018 0.743±0.003 0.466±0.005 0.335±0.018

HETVAE 0.814±0.001 0.725±0.019 0.848±0.011 0.736±0.026 0.723±0.001 0.848±0.011

Tripletformer 0.695±0.008 0.326±0.003 0.215±0.016 0.644±0.001 0.408±0.004 0.215±0.016

PhonemeSpectra
mTAN 0.698±0.005 0.409±0.006 0.515±0.016 0.896±0.001 0.782±0.002 0.817±0.011

HETVAE 0.785±0.002 0.385±0.010 0.528±0.004 0.887±0.001 0.815±0.001 0.808±0.002
Tripletformer 0.679±0.011 0.367±0.035 0.210±0.009 0.854±0.001 0.808±0.001 0.796±0.002

[14] Y. Tashiro, J. Song, Y. Song, and S. Ermon, “Csdi: Conditional score-
based diffusion models for probabilistic time series imputation,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 24804–
24816, 2021.

[15] S. N. Shukla and B. M. Marlin, “Heteroscedastic temporal variational
autoencoder for irregularly sampled time series,” International Confer-
ence on Learning Representation, 2022.

[16] J. Lee, Y. Lee, J. Kim, A. Kosiorek, S. Choi, and Y. W. Teh, “Set trans-
former: A framework for attention-based permutation-invariant neural
networks,” in International conference on machine learning, pp. 3744–
3753, PMLR, 2019.

[17] J. Yoon, W. R. Zame, and M. Van Der Schaar, “Deep sensing: Active
sensing using multi-directional recurrent neural networks,” in Interna-
tional Conference on Learning Representations, 2018.

[18] W. Cao, D. Wang, J. Li, H. Zhou, L. Li, and Y. Li, “Brits: Bidirectional
recurrent imputation for time series,” Advances in neural information
processing systems, vol. 31, 2018.

[19] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,”
Scientific reports, vol. 8, no. 1, p. 6085, 2018.

[20] X. Li, T.-K. L. Wong, R. T. Chen, and D. Duvenaud, “Scalable gradients
for stochastic differential equations,” in International Conference on
Artificial Intelligence and Statistics, pp. 3870–3882, PMLR, 2020.

[21] A. Norcliffe, C. Bodnar, B. Day, J. Moss, and P. Liò, “Neural ode
processes,” 9th International Conference on Learning Representations,
ICLR, 2021.

[22] M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende,
S. Eslami, and Y. W. Teh, “Neural processes,” arXiv preprint
arXiv:1807.01622, 2018.

[23] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[24] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang,
“Informer: Beyond efficient transformer for long sequence time-series
forecasting,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, pp. 11106–11115, 2021.

[25] I. Silva, G. Moody, D. J. Scott, L. A. Celi, and R. G. Mark, “Predicting
in-hospital mortality of icu patients: The physionet/computing in cardi-
ology challenge 2012,” in 2012 Computing in Cardiology, pp. 245–248,
IEEE, 2012.

[26] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “Physiobank, physiotoolkit, and physionet: components of a
new research resource for complex physiologic signals,” circulation,
vol. 101, no. 23, pp. e215–e220, 2000.

[27] A. E. Johnson, T. J. Pollard, L. Shen, H. L. Li-Wei, M. Feng, M. Ghas-
semi, B. Moody, P. Szolovits, L. A. Celi, and R. G. Mark, “Mimic-iii,
a freely accessible critical care database,” Scientific data, vol. 3, no. 1,
pp. 1–9, 2016.

[28] H. Harutyunyan, H. Khachatrian, D. C. Kale, G. Ver Steeg, and
A. Galstyan, “Multitask learning and benchmarking with clinical time
series data,” Scientific data, vol. 6, no. 1, pp. 1–18, 2019.

[29] M. A. Reyna, C. Josef, S. Seyedi, R. Jeter, S. P. Shashikumar, M. B.
Westover, A. Sharma, S. Nemati, and G. D. Clifford, “Early prediction
of sepsis from clinical data: the physionet/computing in cardiology
challenge 2019,” in 2019 Computing in Cardiology (CinC), pp. Page–1,
IEEE, 2019.

[30] A. P. Ruiz, M. Flynn, J. Large, M. Middlehurst, and A. Bagnall,
“The great multivariate time series classification bake off: a review and
experimental evaluation of recent algorithmic advances,” Data Mining
and Knowledge Discovery, vol. 35, no. 2, pp. 401–449, 2021.

APPENDIX

Hyperparameters searched for the competing models
GPR Following [15] we use squared exponential kernel. We
search learning rate from {0.1, 0..1, 0.001} and batch size
from {32, 64, 128, 256}.
M-GPR In M-GPR we used convolution of kernels as shown
in [13]. Similar to GPR, we search learning rate from
{0.1, 0..1, 0.001} and batch size from {32, 64, 128, 256}.
ODE models: We search the standard deviation over the
range of {0.01, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, se-
lect the number of GRU hidden units, latent dimension, nodes
in the fully connected network for the ode function in both
encoder and decoder from {20, 32, 64, 128, 256}. Number of
fully connected layers are searched in the range of {1, 2, 3}.
mTAN: We search the standard deviation from
{0.01, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0}, number
of attention heads from {1, 2, 4}, reference points from
{8, 16, 32, 64, 128}, latent dimensions from {20, 30, 40, 50},
generator layers from {25, 50, 100, 150}, and reconstruction
layers from {32, 64, 128, 256}.
HETVAE: We search the same hyperparameter range men-
tion in [15]. We set time embedding dimension to 128,
search hidden nodes in the decoder from {16, 32, 64, 128},
number reference points from {4, 8, 16, 32}, latent dimension
from {8, 16, 32, 64, 128}, width of the fully connected layers
from {128, 256, 512} and augmented learning objective from
{1.0, 5.0, 10.0}.

