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Gait verification using deep learning with a pairwise loss
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Abstract: A unique walking pattern to every individual makes gait a promising biometric. Gait is
becoming an increasingly important biometric because it can be captured non-intrusively through
accelerometers positioned at various locations on the human body. The advent of wearable sensors
technology helps in collecting the gait data seamlessly at a low cost. Thus gait biometrics using ac-
celerometers play significant role in security-related applications like identity verification and recog-
nition. In this work, we deal with the problem of identity verification using gait. As the data received
through the sensors is indexed in time order, we consider identity verification through gait data as
the time series binary classification problem. We present deep learning model with a pairwise loss
function for the classification. We conducted experiments using two datasets: publicly available ZJU
dataset of more than 150 subjects and our self collected dataset with 15 subjects. With our model,
we obtained an Equal Error Rate of 0.05% over ZJU dataset and 0.5% over our dataset which shows
that our model is superior to the state-of-the-art baselines.

Keywords: Gait verification. Time series classification. Binary classification. Pairwise loss function.

1 Introduction

Biometrics have been tremendously used for identity verification because of their high

accuracy and low risk of breaching. Current biometric-based identity verification systems

work using a variety of human features like fingerprint, iris or face, where user interaction

is necessary, thus yielding a limited advantage over traditional security systems that require

PIN or password. On the other hand, gait patterns are unique to every individual [SJ15a,

WWP18], and can be identified without explicitly interacting with the person, making it a

potential biometric option for identity verification.

Identity verification with gait, also called as gait verification, can be performed using three

approaches: Video-based [Wa03], Floor based [Ve13] and Wearable sensors based [Ga07,

SJ15a]. Video-based approaches work using a distant camera that records the individual’s

walk. In the floor based approach, sensor plates are fixed on the floor (called as force

platforms), and walking patterns are identified through them. In the wearable sensor-based

approach, sensors are placed on the human body at different locations to capture the gait

motion.

In recent years, the latter approach became widely popular because of the advent in wear-

able technology. Unlike video-based approaches, this does not suffer from long-standing

image processing problems like illumination variations, occlusion, clutter, etc. Moreover,
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it is very inexpensive compared to the floor based approaches. Inertial sensors (accelerom-

eters, gyroscopes) required for gait recognition can be placed in clothes, shoes, belts,

watches, and so on [SJ15b]. There are mobile applications which can collect the gait infor-

mation through the accelerometer present in smartphones. Data produced by these sensors

can be transmitted to the computer through wireless transmission technologies. One can

develop models to process and analyze the data to identify or verify the user without her

knowledge. It can be observed that user interaction is not necessary, which makes gait a

potential future biometric security feature.

In the past, most researchers worked on gait recognition with accelerometer sensors by

detecting the step cycles [Th11, Tr12], or signature points [Zh15]. Recently, Giorgi et al.

[Gi18] developed a deep learning model with a recurrent neural network cell and the soft-

max cross-entropy loss function for gait recognition. Softmax cross-entropy like sigmoid

cross entropy works well with the balanced data. However, in biometric applications, more

specifically in biometric verification, data is highly imbalanced, and one needs special loss

functions to handle the imbalance in the data.

In this paper, we present gait verification with deep learning architecture over two datasets.

In the first dataset, called as ZJU dataset [Zh15], gait was recorded with accelerometer sen-

sors placed on five different locations on the body for about 150 subjects. We also created

a new dataset (see section 5) with 15 participants using the accelerometer sensor present

in the smartphone held in the trousers’ right pocket. We use pairwise loss function derived

from the Bayesian Pairwise Ranking (BPR) [Re09] loss function for better classification.

With extensive experimental evaluation, we show the effectiveness of our approach in iden-

tity verification with our model trained using pairwise loss function. The proposed model

with pairwise loss function has an Equal Error Rate (EER) of 0.05%.

The contributions of this paper are as follows:

• We present deep learning model with a pairwise loss function for identity verifica-

tion with gait.

• We develop a gait dataset with 15 subjects using accelerometer sensor present in the

smartphone.

• Our empirical results show that with the proposed model using our pairwise loss

function reduces the EER by 5 times over state-of-the-art algorithms.

2 Literature Review

Gait using accelerometers was first introduced by Morris [Mo04] for identity recognition

and further formally addressed by Mantyjarvi et al. in [Ma05],[Ai05]. Since then, various

techniques (see [SJ15b], [Zh15], [WWP18]) have been developed for analyzing the gait

data collected from accelerometer (inertial) sensors. These techniques can be divided into

two main approaches: signal matching based and machine learning-based.

Signal matching techniques try to match specific template/templates from gait signals

[DMFM18] using a similarity measures like histogram similarity [GHS06], euclidean dis-

tance [GSB10], dynamic time wrapping [DMM17], cross-correlation [Ng14, Re15, SJ15b]
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Figure 1: Body locations for sensors for ZJU dataset.

and Tanimoto similarity [Ng13, Su15]. The problem with these techniques is, they cannot

perform well when the templates vary with the number of samples. To overcome this chal-

lenge, researchers develop segmentation algorithms to identify steps and cycles in the gait

signal automatically. Researchers in [GSB10, Ju12, BS10] compared cycles by length nor-

malization. These techniques suffer from inter-cycle phase misalignment. Researchers in

[Tr12, Th11] used cycle comparison by alignment to overcome the problem of inter-cycle

phase misalignment. However, dependency on cycle detection is a bottleneck in those

methods. Zhang et al. [Zh15] addressed this problem by using salient points called as sig-

nature points (SPs). It is worth noting that they created one of the largest gait datasets

with 175 subjects which we use for our experiments. Using their algorithm, Zhang et al.

achieved an EER of 2.2% for identity verification. In our research, we use this dataset for

the experimental evaluation.

Unlike signal matching techniques, machine learning-based techniques develop classifi-

cation algorithms that can find the features in the signals and assign class labels to them.

In this approach, the whole data is divided into training, and testing with training data is

used to train the algorithm. Once the algorithm is trained, it can be readily implemented

on any verification device. Nickel et al. [NBB11] collected walking dataset of 48 subjects

using the accelerometer present in the smartphone. They extracted features like MFCC

and BFCC, which are widely used for speech processing and employed support vector

machines for the classification. They achieved a minimum False Acceptance Rate (FAR)

of 5.9% and False Rejection Rate (FRR) of 6.3%. Recently, Giorgi et al. [Gi18] proposed

a CNN model with recurrent neural network cell separately for every time series variable

for the recognition and achieved a recognition rate of 97.5% over dataset created by Zhang

et. al. The problem with this approach is that they could not be able to capture the features

across the sensors, which result in low accuracy. Moreover, the usage of RNN cell for ev-

ery time series variable is costly. Unlike them, our approach is very efficient as we use only

one convolution layer and extract features across the variables making it more effective in

terms of error reduction.

3 Background

In this section, we provide a brief introduction to gait, time series classification, and deep

learning approach to it.
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Gait: Gait is a human’s manner of walking and is unique to everyone, making it a promis-

ing biometric. Gait can be easily reflected by the sensors (like accelerometers) placed on

the specific locations of the human body and measured at three orthogonal directions X,

Y, and Z. Unlike other biometrics using fingerprint, face or iris, gait can be easily recog-

nized without human intervention. The advent of wearable technology helps in developing

sensors that can be placed in shirts, trousers, watches, etc. Even, we find the accelerometer

sensor that can record gait, in smartphones. These sensors provide the data uninterruptedly

helping us to use gait biometric for continuously identify verification.

Time series classification: Classification of sequentially-ordered data measurements into

their respective class labels is called time series classification. Data with the sequence of

measurements collected over one variable is called as univariate time series data, whereas

if it is measured over multiple variables, it is called multivariate time series data. In this

work, gait is measured using accelerometer sensors with three orthogonal directions X, Y,

and Z. Hence, we perform a multivariate time series classification for gait verification.

Deep Learning: Deep learning is a branch of machine learning which consists of cascades

of multiple layers of non-linear processing units. Information is processed by feeding the

output of one layer to the successive layer until it reaches the end of the network. Because

of non-linear processing units, it has been widely applied in various applications like ma-

chine vision, time-series data analysis, robotics, and so on. Among the variety of deep

learning models, convolution neural networks have attracted a wide range of researches

because of their tremendous applications.

Convolutional Neural Network (CNN): CNN consists of multiple hidden layers, of

which most of them are convolutional layers. Input is passed to a convolutional layer where

the weights of the neurons in the layer are used to perform convolution operation on the

information received. Generally, a non-linear activation function is applied to the output of

the convolution layer and passed to the pooling layer (Average or Maximum). These steps

can be performed multiple times: convolution layer followed by the pooling layer followed

by another convolution layer. After processing the input by a series of convolutional and

pooling layers, the obtained output is the smaller version of the input features. This output

is fed to the fully connected network, which helps in training from the features extracted

in the previous layer, while the convolutional layer helps in the representation of input

sequences with reduced dimensions. This helps CNNs to emerge as a robust technique for

various machine learning tasks like computer vision, reinforcement learning, time series

analysis, to name a few. Figure 2 is an example of a CNN with one convolution layer, one

max pooling layer, one average pooling layer, and one fully connected layer.

Training CNN: Training of CNN takes place in two stages: 1) Forward pass and 2) Back-

ward pass. In the forward pass, input data is fed to CNN, and output is collected at the last

layer. A loss function L , is used to compute the error between the actual output (y) and

predicted output (ŷ). Various kinds of loss function like logistic loss, sigmoid cross-entropy

loss, softmax cross-entropy loss functions have been developed in the past among which

sigmoid cross-entropy (SCE) loss functions are widely used for binary classification. In

Section 4.2 we derive a pairwise loss function for binary classification.
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Figure 2: Proposed deep learning model.

4 Proposed Deep Learning Model
We consider gait verification as time series binary classification problem where the model

results whether the input gait pattern belongs to a specific person. For this, we present deep

learning architecture for the classification of Gait data.

4.1 Proposed model

We report the proposed model in figure 2. As accelerometer sensors measure data in 3

dimensions, we have multivariate time series data. We extract the features from the input

data through a 1D convolutional layer with 32 kernels of size 2 and rectified linear unit

(ReLU) activation function. We pass the output of the convolution layer through max-

pooling, followed by the average pooling layers. Convolutional layer helps in extracting

the features from input through local spatial coherence with a small receptive field. The

max and average pooling layers help in reducing the dimensions of the extracted features

and improve the efficiency of training. We pass these low dimensional features to a fully

connected layer with 50 neurons. These layers help in learning from all the combinations of

the low dimensional features collected previously. The fully connected layer is connected

to one output neuron. We use ReLU activation function for the nodes present in the fully

connected layer, whereas in the output node, we use a sigmoid activation function. We

performed batch normalization after average pooling layer and fully connected layer. We

use ADAM optimizer with a learning rate of 0.001.

We tune the hyperparameters like the number of epochs, batch size, learning rate, number

of kernels, kernel size, number of neurons in a fully connected layer that are required for

training, manually.

4.2 Pairwise loss function

We are dealing with the problem of biometric verification where the training data is highly

imbalanced: very few positive instances and a large pool of negative instances, making the

learning process difficult. The bulk of the literature addressed this problem of classification

of imbalanced data by up-sampling the instances of a less appeared class or by downsam-

pling the instances of frequently appeared class. The main drawback of these techniques

is, either we get unwanted instances (during up-sampling) or miss the most important in-

stances (during down-sampling) which hinders the performance of the algorithm. Unlike

this approach, we take data as they are, but, sample them while computing the loss by

giving more weight to the less appeared class sequences. For this, we develop a pairwise

loss function with the desired characteristics to handle the imbalance in the data.

Consider binary classification problem for the dataset of N = {(xi,yi)
N
i=1} instances. We

consider instances belong to positive class as positive instances and of negative class as

negative instances. N+ = (xp,yp)|p ∈ {1,2,3, ...,N}∧ yp = 1 denotes set of positive sam-

ples whereas N− = (xn,yn)|n ∈ {1,2,3, ...,N} ∧ yn = 0 denotes set of negative samples
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(N = N+ ∪N−). Our aim is to group the input sequence xi to its respective class using a

CNN with one output node. The output of CNN for an input sequence xi can be repre-

sented as ŷi = }(xi,φ) where φ represents network parameters. For evaluation purpose, we

set (xi, ŷi) ∈ N+ if ŷi ≥ θ where θ is a predetermined threshold value. Otherwise we set

(xi, ŷi) ∈ N−. Consider, ŷp and ŷn are the outputs of the CNN for the pth positive instance

and the nth negative instance respectively. Obviously, we want ŷp ≥ θ > ŷn.

This can be achieved by maximizing the difference between the outputs of positive and

negative instances. The loss function L can be represented as:

L =
−1

|N+|× |N−|

|N+|

∑
p=1

|N−|

∑
n=1

(ŷp − ŷn) (1)

In our pairwise loss function, we provide more weight on correctly predicting positive

class compared to that of negative class as there are only a few instances of the former are

available. This improves the performance of CNN model over the unbalanced dataset.

5 Dataset description and preprocessing

Here, we will briefly describe the datasets used in our study, and the preprocessing per-

formed to make it ready for classification.

5.1 ZJU dataset:

This is a publicly available dataset created by Zhang et al. [Zh15]. This dataset contains

gait patterns collected from 175 subjects in two different sessions. Out of 175 subjects,

153 people attended for both the sessions, and 22 subjects attended for only one. The time

interval between two sessions for each subject varies from one week to six months. In each

session, subjects are requested to walk on a level floor of 20m length with five accelerome-

ter sensors mounted on their body at different locations: the left upper arm, the right wrist,

the right side of the pelvis, the left thigh, and the right ankle as shown in figure 1. These

sensors measure the acceleration in three directions (X, Y, and Z) simultaneously with a

frequency up to 100Hz. For each subject, six recordings are taken in one session. There

are 12 recordings for 153 subjects and six recordings for 22 subjects who attended for only

one session. In this work, we considered the data of 153 subjects who attended both the

sessions. A detailed description of the dataset can be found in [Zh15].

Preprocessing: The dataset is a multivariate time series dataset with 15 variables as ex-

plained above. Every sample has a different length ranging from 7 to 14 secs. However, for

the training of CNN, all the inputs must be of the same dimensions. Hence, we have taken

the data between 2 to 7 secs: there is some noise in the initial 2 secs (during the beginning

of the walk), and everyone walked at least for 7 secs. Now we have 5 secs gait recording

for all the data samples, which leads to 500 points per recording (recording frequency 100

Hz). Now to remove the noise in the gait cycle, we performed average sampling for a sam-

ple size of 10, which leads to data of 50 points per recording. Now our each sample has

dimension 15× 50. Once we reduce the noise from the data, we perform data standard-

ization. Here we rescale the values of every variable in the time series data to 0 mean and
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property value

# Subjects 15

Sample frequency 100Hz

Participants age 24 - 55 Yrs

Female to male ratio ∼ 1:6

# records 10

Floor length 40m

Length of recording 25 - 31s

# Step cycles in a record 38 - 40

Smartphone model Samsung Galaxy J7 Pro

Mobile application used Physics toolbox

Table 1: Basic statistics of our dataset.

Figure 3: Prepossessing of ZJU dataset.

unit standard deviation. Standardization helps the observations to fit in the gaussian dis-

tribution. The sensor recordings for different sensors and subjects are on different scales,

and standardization brings them to the same scale, thus improves the training quality. In

Figure 3, we show the noise reduction and standardization performed in our study.

5.2 Our dataset

We created a new dataset with 15 participants holding a smartphone in their right front

pocket of the trousers. Accelerometer present in the smartphone is used to record the gait

using the software application Physics toolbox 4. We asked the participants to walk nat-

urally on the flat surface of 40m for 10 times in one session and recorded the data at a

frequency of 100Hz. We present basic statistics of our dataset in Table 1.

preprocessing: Here, the data have three variables, which are the readings of the ac-

celerometer in X, Y, and Z directions. Average walking time varies from 25 to 31 secs

and considered the sequence between 5 to 20 secs for the experiments which is similar to

the preprocessing performed over GJU-Accgait data (see Section 5.1). We also performed

downsampling and standardization, as described earlier.

6 Experimental Results and Discussion

In this section, we present the experimental results on the Gait datasets described in sec-

tion 5. We begin with the experimental setup.

4https://physics-toolbox-suite.en.uptodown.com/android
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6.1 Experimental Setup

We evaluate the proposed model for the measure of Equal Error Rate (EER) with two kinds

of setups, as mentioned below:

Same day. Here, we take the gait data of the subjects from one day only. For ZJU dataset,

we take 4 samples for training and 2 for testing randomly. For our dataset, we experimented

on one day. Hence, we consider it a same-day setting where we used 7 samples for training

and 3 for testing.

Mixed day. Here, we take data of the subjects from both the days for ZJU dataset. We split

4 gait sequences of a subject per session for training and 2 for testing. On the whole, our

training data has around 1224 training data samples and 612 testing data samples.

Competing algorithms.

(1) CNN with our pairwise loss (CNN+PW): This is our proposed CNN model with the

pairwise loss explained in Section 4.2.

(2) CNN with sigmoid cross-entropy loss (CNN+SCE): This is our proposed CNN

model with the widely used sigmoid cross-entropy loss.

(3) Support Vector Machines (SVM): We use the support vector machines presented

in [NBB11] for gait recognition. We extracted the features of MFCC, bin distribution,

minimum value, max value, and standard deviation for all the sensors along all the axes

after standardization of the data.

(4) Recurrent CNN (RCNN): This is the model proposed in [Gi18] for gait recognition.

It has two convolutional layers and bidirectional recurrent unit cell.

Computing threshold θ for EER

Here, we show computing the threshold value for competing algorithms used in this paper.

θ for pairwise (PW) loss: For the pairwise loss function, we have one output node for the

proposed model with a sigmoid activation function. Let o denote the output of the output

node. Input sequence is given positive label if o ≥ θ and negative label if o ≤ θ . We vary

θ from 0 to 1 to compute EER.

θ for Sigmoid Cross Entropy (SCE) Loss: For the SCE loss function, we have two output

nodes with linear activation function. Let o1 and o2 denote output of the two nodes and,

the label of the input sequence is positive (or negative) if σ(o1)−σ(o2) is greater than (or

less than) a given threshold θ . We vary θ from −1 to 1.

θ for Support Vector Machines (SVM): We implemented SVM using LinearSVM from

SKlearn library 5 in python. It outputs the score for every input sequence, and we varied

the score from −2 to 2 to compute the threshold for EER.

5www.scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html
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Setup CNN+PW CNN+SCE SVM RCNN

avg. EER avg. EER avg. EER avg. EER

Mixed day 0.05 % 0.23 % 0.55 % 3.4 %

Same day-day1 0.1 % 0.22 % 0.65 % 3.3 %

Same day-day2 0.1 % 0.21 % 0.42 % 48.0 %

Our data 0.5 % 7.1 % 1.1 % 17 %

Table 2: EER scores for competing algorithms.

6.2 Experimental Results

Here, we present the results for the experimental setup mentioned above.

EER comparison. We demonstrate the comparison of various algorithms mentioned above

for computing the EER, for both mixed day and same day setups. We present the compar-

ison results in Table 2. We report the average of EERs computed to verify all the subjects

separately. We find that our model using PW loss outperforms all the other competing al-

gorithms. As an example, for mixed day setup of ZJU dataset, our CNN+PW model has

EER of 0.05% whereas CNN+SCE model has 0.23%, SVM has 0.55% and recurrent CNN

has 3.4%. For the experiments on our data, we achieved EER of 0.5% with our CNN+PW

model whereas CNN+SCE, SVM, and RCNN achieved EER of 7.1%, 1.1% and 17% re-

spectively. It can be seen that RCNN performs worse than all the other algorithms. We

observed that the model has a high number of network parameters that overfits the data

leading to poor performance. These results clearly show that our proposed model with PW

loss performs superior (5 times improvement) in terms of EER.

Detection Error Tradeoff (DET) curves: Performance of models in identity verification

can be evaluated using DET curves, which shows the trade-off between FAR and FRR.

In Figure 4, we present DET curves for both the datasets. Average FAR and FRR over

all the subjects are presented in the graphs. It can be observed that over model CNN+PW

performs very well for higher values of FAR. As an example, in ZJU dataset and mixed day

setup, for FAR of 0.01, CNN+PW achieved FRR of around 10−5, whereas CNN+SCE,

SVM and RCNN achieved around 10−2, 10−2 and 10−1 respectively. For the lower values

of FAR, CNN+SCE wins over our CNN+PW by a slight margin in ZJU dataset. For our

dataset, SVM performs slightly better than our CNN+PW.

Comparison by varying signal length: We present the performance of the algorithms by

varying the signal length as one may be interested in understanding the performance of

the verification system with short signal length. Moreover, people do not want to wait for

a long time to get verified. In the ZJU dataset, for all the experiments, we used the signal

length of 5 secs as this is the maximum length common to every signal of sensors for all

the subjects. For this, we varied signal length from 1 sec to 5 secs and computed the EER

for both mixed and same day setups.

Furthermore, in our dataset, we varied the signal length from 1 sec to 15 secs. We present

our results for varying signal lengths in Figure 5 where X-axis represents the signal length

in seconds, and Y-axis represents average EER. Our CNN+PW outperforms all the other

competitors over our dataset and all the setups over ZJU dataset. As an example, for single
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(d) DET curves: Our data

Figure 4: Detection Error Tradeoff (DET) curves of varying False Rejection Rate (FRR) Vs False

Acceptance Rate (FAR) for different algorithms.
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Figure 5: Comparing average Equal Error Rate (EER) with varying signal length (secs) for different

algorithms.

day setup in ZJU dataset, we achieved an EER of 0.65% even for a signal length of 3

secs. Whereas for CNN+SCE reached an EER of 1.15%, SVM and RCNN reached EER

of 1.53% and 10.30% respectively. Clearly, with our model we can reach reasonable EER

even with less signal length.

Sensor Sensor Sensor

Location Avg. EER % Location Avg. EER % Location Avg. EER %

RW 3.12 RW, LA, RP 0.29 RW, LT, RA 0.42

LA 4.13 RW, LA, LT 0.32 LA, RP, LT 0.16

RP 2.54 RW, LA, RA 0.33 LA, RP, RA 0.21

LT 4.66 RW, RP, LT 0.18 LA, LT, RA 0.19

RA 4.55 RW, RP, RA 0.48 RP, LT, RA 0.17

RW, LA 0.59 LA, LT 0.49 RW, LA, RP, LT 0.16

RW, RP 0.63 LA, RA 0.53 RW, LA, RP, RA 0.15

RW, LT 0.62 RP, LT 0.51 RW LA, LT, RA 0.11

RW, RA 0.68 RP, RA 0.71 RW, RP, LT, RA 0.13

LA, RP 0.72 LT, RA 0.74 LA, RP, LT, RA 0.07

RW, LA, RP, LT, RA 0.05

RW - Right Wrist, LA - Left upper Arm, RP - Right side of Pelvis, LT - Left Thigh, RA - Right Ankle

Table 3: Sensor filtering using CNN+PW model

Sensor filtering. ZJU dataset is created by taking the data from the sensors placed at 5

locations on the body. In this section, we evaluate the capacity of these sensors for the gait

classification. We show the EERs for all the combinations of the sensors in table 3 with

our CNN+PW model. Performance of the model increases with an increase in the number

of sensors used. For the data with a single sensor, we achieved the best EER of 2.54% for

sensor placed on the right side of the pelvis. For the combinations of 2 ∼ 4 sensors, we

achieved EER of 0.51% ∼ 0.07%. We achieved 0.05% of EER for the data with all the

sensors. We observed that the sensor placed on the right side of pelvis plays a key role in

the gait verification compared to the sensors on other locations.
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7 Conclusion

In this paper, we present biometric verification using gait measured with accelerometer

sensors. We formulated the problem as a time-series binary classification. We employed

deep learning architecture with a pairwise loss for the binary classification which does

not require detecting cycles or feature extraction from the signal. Based on a detailed

experimental evaluation over two gait sets of subjects 15 and 150, our architecture reduces

Equal Error Rate (EER) by 5 times compared to state-of-the-art techniques.
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