wir bieten...
Dekobild im Seitenkopf ISMLL
 
Courses in winter term 2012/2013 / Bachelor/Master-Seminar: Business Intelligence: Recommender Systems / Readings
Readings

The slides of the introduction presentation
  • Y. Seroussi, F. Bohnert,I. Zukerman, Personalised rating prediction for new users using latent factor models, HT '11 Proceedings of the 22nd ACM conference on Hypertext and hypermedia, 2011
  • C.Boutilier, R.S. Zemel, B. Marlin. Active Collaborative Filtering, In Proceeding of Uncertainty in Artificial Intelligence, UAI, 2003
  • R. Jin, L. Si. A Bayesian Approach toward Active Learning for Collaborative Filtering. In Proceeding of Uncertainty in Artificial Intelligence, UAI 2004
  • A. S. Harpale,Y. Yang. Personalized Active Learning for Collaborative Filtering, In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, SIGIR 2008
  • A. M. Rashid, G. Karypis, and J. Riedl. Learning Preferences of New Users in Recommender Systems: An Information Theoretic Approach. SIGKDD Workshop on Web Mining and Web Usage Analysis,2008
  • N. Golbandi, Y. Koren, and R. Lempel. Adaptive bootstrapping of recommender systems using decision trees. WSDM, 2011.
  • K. Zhou, S.-H. Yang, and H. Zha. Functional matrix factorizations for cold-start recommendation. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, SIGIR , 2011.
  • S. T. Park, W. Chu, Pairwise Preference Regression for Cold-start Recommendation, RecSys 2009
  • N. Golbandi, Y. Koren, R. Lempel, On Bootstrapping Recommender Systems, CIKM,2010
  • N. Rubens, M. Sugiyama, Influence-based Collaborative Active Learning, RecSys, 2007