wir bieten...
Dekobild im Seitenkopf ISMLL
 
Personen: Dr. Maximilian Stubbemann
Sprechstunde:
C139b Spl, nach Vereinbarung
Telefon, Fax, E-Mail:
Telefon: +49 5121 / 883-40390
Telefax: n.v.
E-Mail:
Postanschrift:
Wirtschaftsinformatik und Maschinelles Lernen
Universitätsplatz 1
Universität Hildesheim
31141 Hildesheim
Besuchsadresse:
Wirtschaftsinformatik und Maschinelles Lernen
Samelsonplatz 1
Universität Hildesheim
31141 Hildesheim

Publikationen:

  • Christian Klötergens, Vijaya Krishna Yalavarthi, Randolf Scholz, Maximilian Stubbemann, Stefan Born, Lars Schmidt-Thieme (2025):
    Physiome-ODE: A Benchmark for Irregularly Sampled Time Sereis Forecasting based on Biological ODEs , in Proceedings of the International Conference on Learning Representations (ICLR). PDF
  • Thorben Werner, Johannes Burchert, Maximilian Stubbemann, Lars Schmidt-Thieme (2024):
    A Cross-Domain Benchmark for Active Learning, in Neural Information Processing Systems. PDF
  • Christian Klötergens, Vijaya Krishna Yalavarthi, Maximilian Stubbemann, Lars Schmidt-Thieme (2024):
    Functional Latent Dynamics for Irregularly Sampled Time Series Forecasting, in ECML PKDD 2024. PDF
  • Johannes Burchert, Thorben Werner, Vijaya Krishna Yalavarthi, Diego Coello de Portugal, Maximilian Stubbemann, Lars Schmidt-Thieme (2024):
    Are EEG Sequences Time Series? EEG Classification with Time Series Models and Joint Subject Training, in arXiv:2404.06966. . PDF
  • Kiran Madhusudhanan, Gunnar Behrens, Maximilian Stubbemann, Lars Schmidt-Thieme (2024):
    ProbSAINT: Probabilistic Tabular Regression for Used Car Pricing, in arXiv:2403.03812. PDF
  • Tim Dernedde, Daniela Thyssens, Sören Dittrich, Maximilian Stubbemann, Lars Schmidt-Thieme (2024):
    Moco: A Learnable Meta Optimizer for Combinatorial Optimization, in Advances in Knowledge Discovery and Data Mining. PAKDD 2025. PDF
  • Tobias Hille, Maximilian Stubbemann, Tom Hanika (2024):
    Reproducibility and Geometric Intrinsic Dimensionality: An Investigation on Graph Neural Network Research, in arxiv:2403.08438. PDF
  • Maximilian Stubbemann, Tobias Hille, Tom Hanika (2023):
    Selecting Features by their Resilience to the Curse of Dimensionality, in arXiv:2304.02455. PDF
  • Maximilian Stubbemann, Gerd Stumme (2023):
    The Mont Blanc of Twitter: Identifying Hierarchies of Outstanding Peaks in Social Networks, in Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases (ECML/PKDD. PDF
  • Maximilian Stubbemann, Tom Hanika, Friedirch Martin Schneider (2023):
    Intrinsic Dimension for Large-Scale Geometric Learning, in Transactions on Machine Learning Research. PDF
  • Maximilian Stubbemann, Gerd Stumme (2022):
    LG4AV: Combining Language Models and Graph Neural Networks for Author Verification, in Advances in Intelligent Data Analysis XX. PDF
  • Dominik Duerrschnabel, Maximilian Stubbemann, Tom Hanika (2022):
    FCA2VEC: Embedding Techniques for Formal Concept Analysis, in Complex Data Analytics with Formal Concept Analysis. PDF
  • Tobias Koopmann, Maximilian Stubbemann, Matthias Kapa, Michael Paris, Guido Buenstorf, Tom Hanika, Andreas Hotho, Robert Jaeschke, Gerd Stumme (2021):
    Proximity Dimensions and the Emergence of Collaboration: A HypTrails Study on German AI Research, in Scientometrics. PDF
  • Maximilian Stubbemann, Tom Hanika, Gerd Stumme (2022):
    Orometric Methods in Bounded Metric Data, in Advances in Intelligent Data Analysis XVIII. PDF

Vorträge:

  • Juli 2024: Time-Series Research at ISMLL, DataH Hannover
  • September 2023: The Mont Blanc of Twitter: Identifying Hierarchies of Outstanding Peaks in Social Networks, ECML/PKDD 2023
  • September 2023: Intrinsic Dimensionality and Graph Learning, ISI Foundation Turin
  • Janua 2023: Topological Data Analysis and Neural Networks, Dagstuhl Workshop on Concept Lattice Based Topological Data Analysis and Reasoning
  • April 2022: LG4AV: Combining Language Models and Graph Neural Networks for Author Verification, Symposium on Intelligent Data Analysis 2022
  • Juli 2021: Dimensionen von Nähe und ihr Einfluss auf die Entstehung von Kollaboration, ITeG Brown Bag Seminar
  • April 2020: Orometric Methods in Bounded Metric Data, Symposium on Intelligent Data Analysis 2020

Forschungskommunikation:

  • Podcast of the University of Kassel: How does ChatGpt work? (In German)
  • Interview for the local magazine Mein Kassel (In German):
    Current state and future of language models and their implications four our lifes.
  • External Lecturer at the Departement of Empirical Research on Schools and Teaching of the University of Kassel:
    ChatGPT et al. : Functionality, History and Consequences for Teaching (in German)

Begutachtungen:

  • Programm Commitee: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, September 9-13 2024
  • Subreviewer: European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, September 19-23 2022
  • Subreviewer: 20th International Semantic Web Conference, October 24-28 2021, Virtual Conference
  • Subreviewer: 18th Extended Semantic Web Conference, June 6-10 2021, Hersonissos, Greece
  • Subreviewer: 19th International Semantic Web Conference, November 1-6 2020, Virtual Conference
  • Subreviewer: 25th International Conference on Conceptual Structures, September 18-21 2020, Bolzano, Italy
  • Subreviewer: 24th European Conference on Artificial Intelligence, June 8-12 2020, Santiago de Compostela, Spain
  • Subreviewer: 25th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, August 4 – 8, 2019, Anchorage, Alaska – USA
  • Subreviewer: 15th International Conference on Formal Concept Analysis, June 25-28 2019 – Frankfurt, Germany