wir bieten...
Dekobild im Seitenkopf ISMLL
 
People: Tomáš Horváth.
Sprechstunde:
C36 Spl, n.V.
Telefon, Fax, E-Mail:
Telefon: +49 5121/ 883-855
Telefax: +49 5121 / 883-859
E-Mail:
Postanschrift:
Universität Hildesheim
Wirtschaftsinformatik und Maschinelles Lernen
Marienburger Platz 22
31141 Hildesheim
Besuchsadresse:
Samelsonplatz 1
31141 Hildesheim

my personal homepage

Publikationen mit ISMLL:

  • Nguyen Thai-Nghe, Lucas Drumond, Tomáš Horváth, Lars Schmidt-Thieme (2012):
    Using factorization machines for student modeling, in Workshop and Poster Proceedings of the 20th Conference on User Modeling, Adaptation, and Personalization, Montreal, Canada. PDF
  • Nguyen Thai-Nghe, Lucas Drumond, Tomáš Horváth, Lars Schmidt-Thieme (2011):
    Multi-Relational Factorization Models for Predicting Student Performance, in KDD 2011 Workshop on Knowledge Discovery in Educational Data (KDDinED 2011). Held as part of the 17th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. PDF
  • Krisztian Buza, Alexandros Nanopoulos, Tomáš Horváth, Lars Schmidt-Thieme (2011):
    GRAMOFON: General Model-selection Framework based on Networks, to appear in Neurocomputing, Elsevier .
  • Nguyen Thai-Nghe, Tomáš Horváth, Lars Schmidt-Thieme (2011):
    Factorization Models for Forecasting Student Performance, in Pechenizkiy, M., Calders, T., Conati, C., Ventura, S., Romero , C., and Stamper, J. (Eds.) Proceedings of the 4th International Conference on Educational Data Mining (EDM 2011). PDF
  • Nguyen Thai-Nghe, Lucas Drumond, Tomáš Horváth, Artus Krohn-Grimberghe, Alexandros Nanopoulos, Lars Schmidt-Thieme (2011):
    Factorization Techniques for Predicting Student Performance, to appear in Educational Recommender Systems and Technologies: Practices and Challenges (ERSAT 2011): Santos, O. C. and Boticario, J. G. (Eds.), IGI Global. PDF
  • Nguyen Thai-Nghe, Tomáš Horváth, Lars Schmidt-Thieme (2011):
    Context-Aware Factorization for Personalized Student's Task Recommendation, in Proceedings of International Workshop on Personalization Approaches in Learning Environments (PALE 2011) at UMAP 2011, CEUR-WS (ISSN 1613-0073).
  • Nguyen Thai-Nghe, Tomáš Horváth, Lars Schmidt-Thieme (2011):
    Personalized Forecasting Student Performance, in Proceedings of IEEE International Conference on Advanced Learning Technologies (ICALT 2011), IEEE Computer Society. PDF
  • Nguyen Thai-Nghe, Lucas Drumond, Tomáš Horváth, Alexandros Nanopoulos, Lars Schmidt-Thieme (2011):
    Matrix and Tensor Factorization for Predicting Student Performance, in Proceedings of the 3rd International Conference on Computer Supported Education (CSEDU 2011). Best Student Paper Award. PDF

Frühere publikationen:

  • Horváth T. (2009):
    A Model of User Preference Learning for Content-Based Recommender Systems, COMPUTING AND INFORMATICS Vol. 28 (2009), No. 4:453--481.
  • Gurský P., Horváth T., Jirásek J., Krajči S., Novotný R., Pribolová J., Vaneková V., Vojtáš P. (2009):
    User Preference Web Search - Experiments with a System Connecting Web and User, COMPUTING AND INFORMATICS Vol. 28 (2009), No. 4:515--553.
  • Gurský P., Horváth T., Jirásek J., Novotný R., Pribolová J., Vaneková V., Vojtáš P. (2008):
    Knowledge Processing for Web Search - An Integrated Model and Experiments, SCALABLE COMPUTING: PRACTICE AND EXPERIMENTS 9 (1):51--59.
  • Eckhardt A., Horváth T., Maruščák D., Novotný R., Vojtáš P. (2008):
    Uncertainty Issues and Algorithms in Automating Process Connecting Web and User, in Uncertainty Reasoning for the Semantic Web I, ISWC International Workshops, URSW 2005-2007, Revised Selected and Invited Papers, Springer, LNCS (vol. 5327), pp. 207--223.
  • Gurský P., Horváth T., Jirásek J., Krajči S., Novotný R., Vaneková V., Vojtáš P. (2007):
    Knowledge Processing for Web Search - An Integrated Model, in Proceedings of the 1st International Symposium on Intelligent and Distributed Computing (IDC 2007), Craiova, Romania, Springer, STUDIES IN COMPUTATIONAL INTELLIGENCE (vol. 78), pp. 95--104.
  • Eckhardt A., Horváth T., Vojtáš P. (2007):
    PHASES: A User Profile Learning Approach for Web Search, in Proceedings of the 2007 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2007), Silicon Valley, USA, IEEE Computer Society, pp. 780--783.
  • Eckhardt A., Horváth T., Vojtáš P. (2007):
    Learning Different User Profile Annotated Rules for Fuzzy Preference Top-k Querying, in Proceedings of the 1th International Conference on Scalable Uncertainty Management, (SUM '07), Washington DC, USA, Springer, LNAI (vol. 4772), pp. 116--130.
  • Horváth T., Vojtáš P. (2006):
    Induction of Fuzzy and Annotated Logic Programs, in Proceedings of the the 16th International Conference on Inductive Logic Programming (ILP '06),Santiago de Compostela, Spain, Springer, LNAI (vol. 4455), pp. 260--274.
  • Gurský P., Horváth T., Novotný R., Vaneková V., Vojtáš P. (2006):
    UPRE: User preference based search system, in Proceedings of the 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI '06), Hong Kong, IEEE Computer Society, pp. 841--844.
  • Horváth T., Vojtáš P. (2006):
    Ordinal Classification with Monotonicity Constraints, in Proceedings of the 6th Industrial Conference on Data Mining, Leipzig, Germany, Springer, LNAI (vol. 4065), pp. 217--225.
  • Horváth T., Vojtáš P. (2005):
    Fuzzy induction via generalized annotated programs, in Computational Intelligence, Theory and Applications, Springer, ADVANCES IN SOFT COMPUTING SERIES, pp. 419--433.
  • Horváth T., Krajči S., Lencses R., Vojtáš P. (2004):
    An ILP model for a graded classification problem, KYBERNETIKA 49 (3):317--332.
  • Horváth T., Krajči S. (2004):
    Integration of two fuzzy data mining methods, NEURAL NETWORK WORLD 14:391--402.
  • Horváth T., Sudzina F., Vojtáš P. (2004):
    Mining rules from monotone classification measuring impact of information systems on business competitiveness, in Proceedings of 6th IFIP International Conference on Information Technology for Balanced Automation Systems in Manufacturing and Services (BASYS '04), Wien, Austria, Springer, IFIP INTERNATIONAL FEDERATION FOR INFORMATION PROCESSING (vol. 159), pp. 451--458.