Personen:
Dr. Josif Grabocka
Peer-Reviewed Conference Papers:
Sprechstunde:
C35 Spl, Freitag 10:00 - 12:00
C35 Spl, Freitag 10:00 - 12:00
Kontakt:
Telefon: | 05121 / 883-40368 |
Telefax: | 05121 / 883-40361 |
E-Mail: |
![]() |
Postanschrift:
Wirtschaftsinformatik und Maschinelles Lernen
Universitätsplatz 1
Universität Hildesheim
31141 Hildesheim
Wirtschaftsinformatik und Maschinelles Lernen
Universitätsplatz 1
Universität Hildesheim
31141 Hildesheim
Besuchsadresse:
Wirtschaftsinformatik und Maschinelles Lernen
Samelsonplatz 1
Universität Hildesheim
31141 Hildesheim
Wirtschaftsinformatik und Maschinelles Lernen
Samelsonplatz 1
Universität Hildesheim
31141 Hildesheim
Highlights:
- January 2016: I defended my PhD (Summa Cum Laude) with a dissertation titled "Invariant Features for Time-Series Classification", accessible here.
Teaching:
Reviewing and Program Committee:
- Journals
- Data Mining and Knowledge Discovery: 2014, 2015, 2017, 2018, 2019
- IEEE Transactions on Knowledge and Data Engineering (TKDE): 2018, 2019
- IEEE Transactions on Neural Networks and Learning Systems (TNNLS): 2019
- IEEE Access: 2018, 2019
- Knowledge-Based Systems: 2017
- Transportation Research (C): 2016
- Conferences
- European Conference on Machine Learning and Principles and Practice of Knowledge Discovery (ECML-PKDD): 2019
- International Joint Conference on Artificial Intelligence (IJCAI): 2019
- Association for the Advancement of Artificial Intelligence (AAAI): 2018
- IEEE International Conference on Intelligent Transportation Systems (ITSC): 2015, 2018
Publications:
Journal papers:
- Josif Grabocka, Nicolas Schilling, Lars Schmidt-Thieme (2016):
Latent Time-Series Motifs, ACM Transactions on Knowledge Discovery from Data, TKDD - Josif Grabocka, Martin Wistuba, Lars Schmidt-Thieme (2015):
Fast Classification of Univariate and Multivariate Time series Through Shapelets Discovery, Journal of Knowledge and Information Systems, 5-year impact factor 2.02 - Josif Grabocka, Martin Wistuba, Lars Schmidt-Thieme (2014):
Scalable Classification of Repetitive Time Series Through Frequencies of Local Polynomials, IEEE Transactions on Knowledge and Data Engineering, 5-year impact factor 2.87 - Josif Grabocka, Lars Schmidt-Thieme (2014):
Invariant Time-Series Factorization, Journal of Data Mining and Knowledge Discovery, Impact Factor 2.77 - Josif Grabocka, Lars Schmidt-Thieme (2014):
Learning Through Non-linearly Supervised Dimensionality Reduction, Springer Transactions on Large-Scale Data- and Knowledge-Centered Systems, LNCS
Peer-Reviewed Conference Papers:
- Ekrem Oeztuerk, Fabio Ferreira, Hadi S. Jomaa, Lars Schmidt-Thieme, Josif Grabocka, Frank Hutter (2022):
Zero-Shot AutoML with Pretrained Models, in Proceedings of the 39 th International Conference on Machine Learning. - Shayan Jawed, Hadi S. Jomaa, Lars Schmidt-Thieme, Josif Grabocka (2021):
Multi-task Learning Curve Forecasting Across Hyperparameter Configurations and Datasets, in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021). - Ahmed Rashed, Josif Grabocka, Lars Schmidt-Thieme (2021):
A Guided Learning Approach for Item Recommendation via Surrogate Loss Learning, in Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. - Hadi S. Jomaa, Josif Grabocka, Lars Schmidt-Thieme (2021):
Dataset2Vec: Learning Dataset Meta-Features, in Data Mining and Knowledge Discovery Journal (The final publication is available at link.springer.com ). https://github.com/hadijomaa/dataset2vec . - Jonas Sonntag, Lars Schmidt-Thieme, Josif Grabocka (2020):
A machine learning approach to infer on-street parking occupancy based on parking meter transactions, in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). - Shayan Jawed, Josif Grabocka, Lars Schmidt-Thieme (2020):
Self-Supervised Learning for Semi-Supervised Time Series Classification, in Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2020). - Randolf Scholz, Josif Grabocka, Lars Schmidt-Thieme (2019):
Learning surrogate losses, in arXiv preprint arXiv:1905.10108 (2019). - Rafael Rêgo Drumond, Lukas Brinkmeyer, Josif Grabocka, Lars Schmidt-Thieme (2019):
HIDRA: Head Initialization across Dynamic targets for Robust Architectures, in SIAM International Conference on Data Mining (SDM20), 2020.. - Lukas Brinkmeyer, Rafael Rêgo Drumond, Randolf Scholz, Josif Grabocka, Lars Schmidt-Thieme (2019):
Chameleon: Learning Model Initializations Across Tasks With Different Schemas, in arXiv preprint arXiv:1909.13576 (2019). - Hadi S. Jomaa, Josif Grabocka, Lars Schmidt-Thieme (2019):
In Hindsight: A Smooth Reward for Steady Exploration, in arXiv preprint arXiv:1906.09781 (2019). - Hadi S. Jomaa, Josif Grabocka, Lars Schmidt-Thieme (2019):
Hyp-RL: Hyperparameter Optimization by Reinforcement Learning, in arXiv preprint arXiv:1906.11527 (2019). - Vijaya Krishna Yalavarthi, Josif Grabocka, Hareesh Mandalapu, Lars Schmidt-Thieme (2019):
Gait verification using deep learning with a pairwise loss, in 18th International Conference of the Biometrics Special Interest Group (BIOSIG 2019). - Ahmed Rashed, Shayan Jawed, Jens Rehberg, Josif Grabocka, Lars Schmidt-Thieme, Andre Hintsches (2019):
A Deep Multi-Task Approach for Residual Value Forecasting, in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2019). - Mohsan Jameel, Josif Grabocka, Mofassir ul Islam Arif, Lars Schmidt-Thieme (2019):
Ring-Star : A Sparse Topology for Faster ModelAveraging in Decentralized Parallel SGD , in In Joint European Conference on Machine Learning and Knowledge Discovery in Databases (DMLE@ECML-PKDD 2019). - Ahmed Rashed, Josif Grabocka, Lars Schmidt-Thieme (2019):
Attribute-Aware Non-Linear Co-Embeddings of Graph Features, in 13th ACM Recommender Systems Conference (RecSys 2019). - Ahmed Rashed, Josif Grabocka, Lars Schmidt-Thieme (2019):
Multi-Relational Classification via Bayesian Ranked Non-Linear Embeddings, in 25th ACM SIGKDD conference on knowledge discovery and data mining (SIGKDD 2019). Acceptance Rate: 14.1% (170 out of 1200). - Hadi S. Jomaa, Josif Grabocka, Lars Schmidt-Thieme (2019):
A Hybrid Convolutional Approach for Parking Availability Prediction, in International Conference on Convolutional Neural Networks (IJCNN2019) . - Ahmed Rashed, Josif Grabocka, Lars Schmidt-Thieme (2019):
Multi-Label Network Classification via Weighted Personalized Factorizations, in International Conference on Agents and Artificial Intelligence (ICAART 2019). - Josif Grabocka, Lars Schmidt-Thieme (2018):
Neuralwarp: Time-series similarity with warping networks, in arXiv preprint arXiv:1812.08306. - Shayan Jawed, Eya Boumaiza, Josif Grabocka, Lars Schmidt-Thieme (2018):
Data-Driven Vehicle Trajectory Forecasting, in European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases Workshop on (KNOWMe@ECML PKDD 2018). - Dripta S Raychaudhuri, Josif Grabocka, Lars Schmidt-Thieme (2017):
Channel masking for multivariate time series shapelets, in arXiv preprint arXiv:1711.00812 (2017). - Hanh T. H. Nguyen, Martin Wistuba, Josif Grabocka, Lucas Rego Drumond, Lars Schmidt-Thieme (2017):
Personalized Deep Learning for Tag Recommendation, in Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2017), Jeju, South Korea. - Mit Shah, Josif Grabocka, Nicolas Schilling, Martin Wistuba, Lars Schmidt-Thieme (2016):
Learning DTW-Shapelets for Time-Series Classification, in ACM IKDD Conference on Data Science. Best Paper Award. - Josif Grabocka, Alexandros Dalkalitsis, Athanasios Lois, Evangelos Katsaros, Lars Schmidt-Thieme (2014):
Realistic Optimal Policies for Energy-Efficient Train Driving, in Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems, ITSC 2014. - Josif Grabocka, Nicolas Schilling, Martin Wistuba, Lars Schmidt-Thieme (2014):
Learning Time-Series Shapelets, in Proceedings of the 20th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD 2014. Acceptance Rate: 14.6% (151 out of 1036). - Josif Grabocka, Erind Bedalli, Lars Schmidt-Thieme (2014):
Supervised Nonlinear Factorizations Excel In Semi-supervised Regression , in Proceedings of the 18th Pacific-Asia Conference on Knowledge Discovery and Data Mining, PAKDD 2014, Springer, LNCS, Tainan, Taiwan. - Josif Grabocka, Lucas Drumond, Lars Schmidt-Thieme (2013):
Supervised Dimensionality Reduction Via Nonlinear Target Estimation, in Proceedings of the 15th International Conference on Data Warehousing and Knowledge Discovery, DaWaK 2013 . - Josif Grabocka, Erind Bedalli, Lars Schmidt-Thieme (2012):
Efficient Classification of Long Time Series, in Proceedings of ICT Innovations Conference 2012, Advances in Intelligent Systems and Computing, Volume 207, pp 47-57, Springer, Berlin/Heidelberg . - Josif Grabocka, Alexandros Nanopoulos, Lars Schmidt-Thieme (2012):
Invariant Time-Series Classification, in Proceedings of European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML'12) , Bristol, United Kingdom. - Josif Grabocka, Alexandros Nanopoulos, Lars Schmidt-Thieme (2012):
Classification of Sparse Time Series via Supervised Matrix Factorization, in Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI'12), Toronto, Canada.